Pricing in Electricity Markets
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The technical characteristics of electricity generation and transmission have implications
for the way in which economic principles are adapted to evaluate pricing and regulation
issues in electricity markets. In particular, there is an externality associated with the way in
which electricity flows in networks because of Kirchoft’s laws. In this paper, a mathematical
programming model is presented that simulates a competitive electricity market, based on
the spatial-intertemporal equilibrium models pioneered by Takayama and Judge (1971).
The model is used to simulate the operation of a hypothetical electricity market, illustrating
some of the issues arising from the network externality. [ 2001 Society for Policy Model-
ing. Published by Elsevier Science Inc.

1. INTRODUCTION

Australia is in the process of establishing a national electricity
market. The objective is to develop a market that operates as
close as possible to the concept of economic efficiency by creating
competition in those components that are contestable. However,
the technical nature of electricity production and transmission still
requires a significant amount of regulation to create and run an
electricity market that produces market outcomes consistent with
economic efficiency.

The way in which the market is regulated can affect the degree
to which the operation of the market is economically efficient. In
addition to short-term efficiency considerations, the operation of
the market has important consequences for the way in which the
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augmentation of both transmission and generation takes place.
One important issue is whether the design of the electricity market
leads to an efficient system of transmission and generation in the
long run.

Recently, there has been an increase in research relating to
regulation of the industry and pricing issues, particularly on the
pricing of electricity transmission in networks (Bushnell and Stoft,
1996; Chao and Peck, 1996; Wu et al., 1996). A theme emerging
from these articles is that some of the principles underlying propos-
als on the regulation of electricity markets are so-called folk theo-
rems. That is, they are commonly accepted assertions about the
economic principles that, in fact, do not apply to the electricity
market. Wuetal. (1996) claimed that these assertions arise because
the economic principles being applied to the electricity market are
borrowed from other applications of economics, such as transport
economics. However, the technology of electricity production and
transmission is such that the use of principles from other applica-
tions is inappropriate.

This paper aims to illustrate the economic principles embodied
in an economically efficient electricity market through the use of
a mathematical programming model.

In the model presented here, the power flow equations and
variables for a network are included, based on the methodology
outlined in Chao and Peck (1996). This paper extends their work
by introducing time-specific demand and supply for electricity
and allowing the transmission network structure to be varied. A
theoretical model is used to analyze how an economically efficient
market would price electricity in these circumstances.

A numerical version of this model is then solved to illustrate
some of the economic principles.

The structure of the paper is as follows. The mathematical
programming methodology is outlined in Section 2. Section 3
formally describes the model used here, and derives the pricing
rules necessary for long-run economic efficiency. To set the scene
for the numerical example, Section 4 presents the structure of a
hypothetical electrical market. Sections 5, 6, and 7 outline the
methods relating to demand, transmission, and production of elec-
tricity. The results are discussed in Section 8, and Section 9 is the
conclusion and suggestions for further research.

2. MATHEMATICAL PROGRAMMING METHODOLOGY

Samuelson (1952) showed that it was possible to construct a
maximization problem that guarantees fulfilment of the conditions
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of perfectly competitive equilibria among spatially separated mar-
kets. This provided the opportunity to use mathematical program-
ming to simulate market behaviour. Later, Takayama and Judge
(1971) significantly extended the applicability of the technique
by showing that the competitive and monopoly models could be
formulated as quadratic programming models.

They also showed that two alternative formulations—the quan-
tity formulation (primal), and the price formulation (the purified
dual of the primal)—could be used to compute market equilib-
rium.! Takayama and Woodland (1970) proved the equivalence
between these two formulations. Takayama and Judge (1971)
also showed that the quantity and price formulations could be
combined to form another maximization problem where both
quantity and price are explicit variables in the model. This is
the general formulation referred to by MacAulay (1992), and is
sometimes referred to as the self-dual or primal-dual formulation.
Takayama and Judge (1971) also refer to it as the net social revenue
formulation. The model presented here has been solved for three
formulations—quantity (primal), the dual to the nonlinear primal
as described in Balinski and Baumol (1968), and the primal-dual.

The general formulation (primal-dual) has wider applicability
than either the quantity formulation (primal) or price formulation
(dual). For example, it applies where interdependent demand
functions do not satisfy the intergrability condition (that is there
is no unique solution to their integration), or where policy imposes
constraints on both prices and quantities.

In this particular study, the quantity formulation has advantages
over the general formulation. First, it reduces the number of vari-
ables and equations, which is important when dealing with large-
scale models. Second, it is easier to explain the technique and
develop and implement the model. This is important, when the
time to complete the study is short. For similar reasons, the quan-
tity formulation has advantages over other related techniques used
to compute economic equilibria, such as nonlinear complementary
programming and computable general equilibrium models.

In electricity markets, cost and demand conditions vary by time
and from place to place. For example, electricity demand can be
met by generation from a range of technologies (gas and coal) and

"A useful reference on the dual in nonlinear programming is Balinski and Baumol
(1968).
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a range of plant sizes, all connected by a network of transmission.
Therefore, spatial-temporal models, which include elements of
networks, are particularly useful to capture this complexity.

Theoretical developments and the application of this methodol-
ogy to study pricing and deregulation in spatial energy markets
increased during the 1980s. Some examples include Salerian
(1992), Kolstad (1989), Provenzano (1989), Uri (1983, 1989),
Hobbs and Schuler (1985), and Sohl (1985).

In the mathematical programming model developed here, the
supply of electricity is represented by economic-engineering mod-
els of power stations and transmission lines. Mathematical pro-
gramming has been widely applied in modeling electricity supply,
primarily to evaluate the least-cost options to meet forecast de-
mand. That is, demand is exogenously specified for these models.
Examples include Munasinghe (1990), Scherer (1977), and Turvey
and Anderson (1977). Two Australian applications of note are
ABARE’s version of the MENSA model (Dalziell, Noble, and
Ofei-Mensah, 1993) and CSIRO’s earlier version of the MENSA
model (Stocks and Musgrove, 1984).

An advantage of the model presented here is that the quantity
demanded (and implicitly price) is endogenous to the model.

3. MATHEMATICAL MODEL

This section formally describes the model used in this study.
As mentioned in the previous section, the model presented here
simulates the long-run market equilibrium. The model represents
a hypothetical electricity market that could involve 12 generators
distributed around a possible network consisting of four nodes
and five links. Demand for electricity takes place at two of the
nodes, and generation can take place at three of the nodes. The
model represents an annual market consisting of 34 time periods—
that is, the 8760 hours in the year have been allocated to 34 time
periods (load blocks).

The model has nonlinear variables in both the objective function
and constraints. It also includes variables that may have negative
or positive values (that is, they are unconstrained in sign).

3A. Notation

The notation used to present the model is divided into sets,
parameters, and variables. The notation is consistent with the
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GAMS? source code used to generate the model, which is available
from the authors on request.

Sets
b
n

2

b

p

S 1, ...

PR

1
1

np 1,...
1

..., 34 Time blocks in which electricity is demanded.

4 Nodes on network.
, 4 Nodes on network.
Lo 12 Power stations.
, 5 Transmission corridors.

Primal variables

NSW
QDb.n
0GC,
0GO,,
oTC;
QSb,n

QPb,n.np

8b,n.np

eb,n

Net social welfare.

Demand for power at node #n in each block b (PWh).
Installed capacity of each plant p (GW).

Output of plant p in load block b (GW).

Number of lines of a given capacity in each transmission
corridor s.

Electricity generated at node » in load block b from
generators located at the node (GW).

Quantity of power flow in load block b on an individual
line, leaving (arriving at) node n for (from) node np
(GW).

Difference between phase angles over a transmission
corridor linking nodes n and np in load block b.
Voltage phase angle at node n in load bock b, for all
nodes except node 1.

Lagrangian variables

Sb.n,np

T;

Shadow price of the equation defining the difference in
phase angles between nodes n and np (Equation 5).
Shadow price of constraint on the maximum number of
power lines that can be erected between two nodes along
transmission corridor s (Equation 9).

Shadow price of balancing demand and supply at node
n in block b (Equation 4).

Shadow price of balancing the generation of power sta-
tion p in block b with its installed capacity (Equation 2).
Shadow price of the limit on installed capacity of power
station p (Equation 3).

?For more information on the GAMS computer software package see: Brooke, Kendrick
and Meeraus (1992); Meeraus (1983); and Bisschop and Meeraus (1982).
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Xpnnpy  Shadow price of power flows between nodes n and np
(in block b) obeying Kirchoff’s laws (Equation 6).

Yy, Shadow price of electricity at node »n in block b (Equa-
tion 7).

Zy.m  Shadow price in block b of the capacity limit of each
power line connecting node » to node np (Equation 8).

Parameters

Kynp Maximum capacity of each line connecting nodes n and
np (GW).

Js Maximum number of lines along transmission corridor s.

Ay Constants for inverse demand curve in block b at node n.

Chn Slope of inverse demand for electricity at node # in block b.

My, Variable costs ($m/MW) of station p in block b.

Fixed cost ($m/MW) of plant p.

I Annualized fixed cost of constructing one transmission
line on links.
1000. Scalar for converting GW to MW.

e, Generation unit availability factor (1 = 100% availability
of all units at station).
5 Maximum generation capacity of station p.

aa, Parameters on the power flow equations.

bbn,np

ccn,np

I 1000 divided by hours of duration in block b, converts
PWh to GW.

3B. The Primal Model

Objective function ($ million):
NSW = EE(ab.nQDh,n + %Ch.nQD%.n) - EEmb.ﬂQGOh.p - EdPQGCp - EZ,QTCX (1)
b n b p ) s

The objective function maximises net social welfare (measured
as consumer plus producer surplus—the area under the demand
curve minus the sum of the variable costs). The first right-hand
side term in the equation is the area under the demand curve
(integral of the demand curve). The second and third terms are
the total costs of operating the power stations and the total costs
(annualized) of the installed generating capacity for power sta-
tions. The fourth term is the total cost of constructing power lines
along the transmission corridors. The model is long run in nature,
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so that the location and capacity of both generation and transmis-
sion are to be optimized.
Energy generation installed capacity balance (GW):

0GO,, < e, OGC, for b, p )

This equation limits the output of each power station in any
time period to the amount of capacity installed.
Maximum plant generation capacity (GW):

0GC, < f, for p 3)

The amount of capacity installed for each plant is limited by f,
the maximum number of units allowed times the rated generation
capacity of each unit.

Nodal electrical generation (MW):

0S8y, — > 0GO,, <0  forbn (4)
P

The amount of electricity generated at each node in each load
block is limited by the output of all power stations generating
electricity at that node in the load block.

Phase-angle difference (radians):

8b,n.np - 6b,n + eb.np =0 for b’ n, np (5)

This is the difference in the phase angles between two nodes,
n and np, which form a link. The phase angles and the difference
in phase angles are free variables, being unconstrained in sign.
There are only n — 1 independent phase angles, and so the phase
angle at node one is set to zero.

Equation 5 and the following real power-flow equation encapsu-
late Kirchoff’s laws on the flow of electricity in networks (see
Section 6 for further explanation).

Real power flow (MW):

2 —
uQPb.n.np - bbn.np 8b.n,np = CCupp 8b.n.np = adyyy for b5 n, np (6)

The real power flow on an individual line is a quadratic function
of the difference between the voltage phase angles at each end
of the line. The power flow variable is a free variable, and there
is one variable at each end of the link between two nodes. By
convention, a negative value means power is being imported to
the node, and a positive value means that power is being exported
from the node along the line. The sum of the two power flow
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variables at each end of the line is the total transmission loss along
the line.
Supply and demand (GW):

erDb,n - QSb,n + 2 QPb,n.np QTCA = O fOf b7 n (7)
np

The quantity of electricity demanded at the node in any time
period is limited to the quantity of electricity generated at the
node and the net sum of electricity imported and exported by
lines connected to the node.

Transmission line capacity (GW):

uQPh,n.np = kn,np for ba n, np (8)

In any load block, the total amount of power flowing along an
individual line connecting two nodes is limited to the maximum
(thermal) capacity of that line.

Maximum number of lines:

QTC, < j, for s ©)

The number of transmission lines along a corridor connecting
two nodes is limited to the maximum number of lines the corridor
can accommodate.

Non-negative and free variables:

QTC, OD, OGO, OGC, QS = 0; QP, 0, d are free variables.

3C. Economic Interpretation of the Kuhn-Tucker Conditions

The Kuhn-Tucker conditions for the existence of a solution
show the economic principles embodied in the model. They con-
tain information on the pricing of electricity at all nodes of the
network, the economic dispatch of power stations, the effects of
transmission losses on the operation of the system, and the manner
in which the capital costs of generation and transmission are recov-
ered. The Kuhn-Tucker conditions are derived from the following
Langrangian model. To avoid repetition, the Kuhn-Tucker condi-
tions in the form of the original primal constraints (Equations 2
to 9) are not repeated here.

Lagrangian of the primal problem:

MaX L = EEab,nQDb,n + ;cthQD%Jl
b n

- Ezmb,pQGOb.p - EdpQGCp - EZSQTCS
b p p s
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+ ggvb,,,(e,,QGc,, - 0GO,,)
£ SW(f, - 0GC,) + gEUM(EQGOb,p - 05,

+ EEESIJ‘n,;zp(eb,n - 9b,np - 6b,n,np)

b n np

+ EEEXb.n,ﬂp(aan,np + bbn,anb.n.np + CCn,an%;,n,np - uQPb.n.np)

b n np

+ EZYb,n QSbe - E(Qph.nanTC.\') - erDh.n>
b n

np

+ EEEZ)l,er(kn,np - uQPb,n,np) + ETY(]V - QTCV)

b n np

QTC,0D,0GO,0GC,08,T,UVW,Y,Z = (; OP0,3,X,S free  (10)

aQall;,m =ay, + ¢,,ODy, — 1Y}, <0 for b,n and
oL
( )QDb.n = (ah‘n + Cb.nQDbn - rbe.n)QDbn =0 for b7n (11)
90Dy, ’ ' '

Equation 11 states that when the quantity of electricity de-
manded is positive for a load block, the nodal price (Y;,r,) is
equal to the price that consumers are willing to pay for a unit of
energy at that node as given by the linear demand function.

- oL =-U,+Y,=<0 for b,n and

dQSb,n
(LL )QS = (U, + Y,,)0S,, =0  forbn (12)
aQSbﬁ b.n b, b bn 5

Equation 12 states that when power is generated at a node in
a load block, the nodal price (Y},) is equal to the (shadow) price
of supply (U,,) at that node.® If there is no local generation at a
node, then the nodal price can be less than the supply price. This
equation also means that if generation takes place at the node,
then the total revenue received for electricity generated at the
node (Y,,0S,,) equals the revenue paid to the generators at the
node (U,,0S;,)-

3Nodal price here is not scaled for the hours of duration of the load.
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aL
GQGOW = Ty T vaP +U,<0 for b,p and
oL - .
90GO,, QGO,, = (=myy = Vi + Up)QGOy, =0 forbp (13)

Equation 13 states that when a plant p (located at node n) is
generating electricity, the supply price (U,,) at the node is equal
to the operating cost of the power station (1,,) plus the rent (V)
earned because its installed capacity is fully utilized in this period.
The rent occurs when the power station is operating but it is not
the marginal plant being dispatched on the network. This means the
price received exceeds the operating cost of production (short run
marginal cost). The rents, V, represent a contribution to capacity
cost. When the plant is the system marginal plant dispatched, the
nodal price equals the plant’s short-run marginal cost of produc-
tion. This condition also shows that the revenue paid to an individ-
ual power station is equal to the total operating cost plus the rent
accrued, because its generating capacity is limiting in that time
period.

P
oL
(aQGC )QGC,; = (*dp + EepVpr - Wp QGCp =90 forp (14)
P b

Equation 14 states that the sum of the profits or rents [that is,
the extent to which the nodal (supply) price exceeds the plant
marginal cost] for all load blocks, should equal the unit capital
cost of the power station plus any rent it accrues because its
installed capacity is limited by the maximum allowed. Plant capac-
ity is installed only if the cost of the capacity can be recovered.
However, if there is a restriction on installed capacity that is
binding, then the imputed value or opportunity cost of capacity
can exceed its unit construction cost. Equations 14 and 13 form
the typical peak-load pricing approach used to determine the
optimal mix of power stations on the system.

aaeL = S (Soan — Somp) =0 for b # 1 (15)
b.n np

Equation 15 states that the sum of the differences in (shadow)
prices of changing the phase angles at each end of links connected
to the node must sum to zero. The (shadow) price of changing a
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phase angle is defined in the next equation. Equation 15 illustrates
the network externality. It can be thought of as a zero profit
condition, so that there are no gains to be made by adjusting
phase angles and changing power flows (arbitrage), taking into
account that adjusting one power flow causes simultaneous adjust-
ments in other power flows.*

aL
88b,np

= 7Sb.n,np + (bbn,np - chn,npab.n,np)Xb.n,np =0 for b;anp (16)

Equation 16 states that the (shadow) price of a difference in
phase angle over a line is equal to the marginal power flow (with
respect to the difference in the phase angle) times the (shadow)
price of power flow along a single line.

aL
aQP b.nnp

= Xyt — Y, QTC; — Z, . = 0 for b,n,np (17)

Equation 17 implies that the nodal price of electricity must
equal the sum of the (shadow) price of power flow along an
individual line divided by the number of lines and the shadow price
on the maximum thermal capacity of an individual line divided by
the number of lines. If individual transmission lines are operating
at less than maximum capacity, then the nodal price is equal to
the shadow price of power flow along the line. If capacity is
limiting, then the nodal price is equal to the shadow price of power
flow plus a rent.

JL
307C. = —f — %g%Yby,,QPMW, -T,<0 for s and
( oL )QTC - (*t — SSSY,, 0P — TIOTC, =0 fors (18)
aQTCA. s s P b.n bnnp s

Equation 18 states that if an individual line is built, then the
net revenue received from purchasing and selling power over the
line in all time periods must be equal to the unit capacity cost of
the line plus any imputed rent it receives because line capacity is
limiting. This represents a zero profit condition.

It is analogous to the concept of marginal value product used in economics, whereby
the price for an input is equated with the marginal physical product times the output price.
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P5gasoc P8coall
P6gascc P9coall
P4gasol P10coall
P12gasol P11coal1

P1coall Demand

P2coall

P3coall

Figure 1. Possible structure of the hypothetical electricity market.

4. STRUCTURE OF AN ELECTRICITY MARKET

A hypothetical market is used in this study. It has the possibility
of four nodes, which can be connected as shown in Figure 1.

Demand for electricity takes place at nodes N1 and N3. Genera-
tion can take place at nodes N1, N2, and N4.

The aim is to determine the quantities of electricity consumed
at nodes N1 and N3 and the location and capacity of transmission
lines and power stations, which result in an economically efficient
market, representing a long-run competitive equilibrium.

S. DEMAND

For each node where demand takes place, the load duration
curve provides a useful description of demand across the year
(see Figure 2).

With a single node, the load duration curve is obtained by
arranging the hourly loads at the node during the year into de-
scending order (see Scherer 1977; Turvey and Anderson 1977).
However, in a network with more than one demand node, there
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Figure 2. Load duration curve for nodes N1 and N3.

is an additional complexity introduced because the demands at
each node must be for the same points in time.

To ensure that the demands at each node are coincident in
time, the following procedure is used. First, the load duration
curve for one node (N1) was derived in the manner described
above. Second, the load duration curve for the second demand
node was determined using the chronological order of loads from
the load duration curve at N1. This method was chosen for conve-
nience. However, the method introduces some averaging issues
into load duration curves of nodes other than the base node, N1.
This means that the shape of the implied load duration curve for
N3 may differ from that of its actual load duration curve. It would
be useful to investigate the effects of any bias and consider alterna-
tive methods for determining load blocks.

Thirty-four demand periods are defined by dividing the load
duration curve for the first node into 100-MW load intervals. This
create load blocks of unequal duration, measured in hours.

Each of the 34 load blocks is assumed to have an independent
linear demand function that relates the amount of electricity de-
manded to its price, and is given by:

Price = a + w Quantity. (19)

Any effects other than price (e.g., weather) are assumed exoge-
nous and are implicit in the constant term of the demand function.
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The parameters of each demand function, a and w, are cali-
brated using assumed prices, quantities, and an own-price elasticity
of demand, E. The parameters are given by:

a = Price (1 — 1/E) and w = 1/E s Price/Quantity (20)

The price-elasticity of demand is assumed to be —0.3.

6. TRANSMISSION

The special feature of this model is the incorporation of power
flow equations into a meshed network. The presentation here is
based on that of Chao and Peck (1996). The real power flow in
a network, based on Kirchoff’s laws, is given by:

Qij = G,,Vg - G,jV,-VjCOS(e,- - 6]) + Y,-]-V;‘/,Sin(ﬂ,- - 9]) (21)

where Q is the power flow (measured in Gigawatts) from node i
to node j, G, V, and Y are parameters relating to resistance,
voltage, and admittance.’ 6 is the voltage phase angle at each node
(measured in radians). It is the difference in phase angles between
two nodes that determines the magnitude of the power flow be-
tween two nodes (see Chao and Peck, 1996, p. 35). The voltage
phase angle and the power flow can be negatively valued. When
the power flow for Q; is negative, the flow is from node j to node
i. The transmission loss along the line is given by Q; + Q;.
Under normal operating conditions, the real power flow equa-
tions can be approximated by the following quadratic function
(see Chao and Peck, 1996, p. 36, pp. 41-42, and pp. 50-52):

Q; = GV} — ViV) + Y,V,V(6, — 0) + 12G,;V.V(8, — 6, for i,j (22)

In this power-flow equation, marginal power flow increases at
a decreasing rate with respect to the phase angle and the function
is convex.

Each of the nodes are connected by corridors made up of a
number of transmission lines. The assumed technical properties
of the transmission lines and the assumed maximum transmission
capacities along the lines are described in Table 1.

The distance between nodes plays an important role in de-
termining the overall characteristics of the line. For example,

*Gy; = rj/(r; + x) and Y;; = x;j/(r}; + x};), where r;; is the product of the resistance
per kilometer and distance shown in Table 1, and x;; is the product of the impedance per
kilometer and distance shown in Table 1.
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Table 2: Plant Data

Maximum
allowable
Power capacity Fuel cost Capacity Life
Node station Availability MW $-MWh $m-MW Years
Node 1 P1 1 1270 14.8 1.2 30
P2 1 861 14.3 1.4 30
P3 1 2 540 14.0 1.3 30
P4 1 500 18.5 12 30
Node 2 P5 1 unlimited 32 0.5 30
P6 1 unlimited 23.5 0.85 25
P4 1 500 18.5 1.2 30
P12 1 500 18.5 0.8 30
Node 4 P8 1 1268 12.1 1.45 30
P9 1 960 13.0 1.3 30
P10 1 1268 12.2 1.4 30
P11 1 890 14.8 1.25 30

although the same type of line can connect nodes N2-N3 and nodes
N1-N2, the overall characteristics of the line vary significantly. In
particular, the total resistance along a line N2-N3 is 6.4 times as
great as between N1-N2, because the distance between N1-N3 is
6.4 times as large as N1.

7. PRODUCTION MODEL

The data for the power stations located at each node are shown
in Table 2. There are several types of plants available, ranging
from baseload (coal) through to peaking (gas).

8. RESULTS AND DISCUSSION

In this section, the physical and quantity variables are presented
first, followed by price, revenue, and cost results.

8A. Results in Summary

Figure 3 summarizes the optimal solution of the numerical
model. It shows the loading of power stations in each time block,
the number of power lines on each link, and the direction of power
flows in each block.

Generation occurs at nodes 1,2, and 4. Node 4 provides baseload
power. It is able to have four coal-fired power stations operating,
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P1(b1tob29) Power station P1 loaded during blocks b1 to b29.

150km Distance between nodes
3.883 lines Number of transmission lines along link connecting two nodes

Figure 3. Optimal transmission structure, power flows, and loading.

but at the optimum, only three are built, all of which run at
maximum capacity over all time blocks. Three power stations are
built at node 1. Two of these stations (P3 and P2) provide baseload
capacity, and the third (P1) provides intermediate and peaking
capacity. Node 2 has four power stations that provide intermediate
and peaking capacity.

8B. Demand

The levels of demand for each node over the load blocks are
shown in Figure 4. The load duration curve has the expected
shape. However, there is one point worth noting. Demand reaches
a peak reasonably early in the load duration, which is different
to that in the original load curve (Figure 2). The reason is that
this model simulates a long-run equilibrium using peak load princi-
ples. A peaking plant is only installed if there is sufficient profit
(revenue exceeds total short-run marginal costs) to cover the long-
run marginal cost of capacity. For the very last units of peaking
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Load (GW)

0 876 1752 2628 3504 4380 5256 6132 7008 7884 8760
Load duration (hours)

Figure 4. Load at demand nodes (GW).

capacity installed, this profit margin is generated by rationing
demand so that price exceeds short-run marginal cost. This is
analogous (in proposed electricity markets) to setting price equal
to the value of foregone load when generating capacity is limiting.

In the original load data (Figure 2), prices to consumers did
not vary as much by load block, particularly in the extreme peak
periods; this allowed demand to rise above the levels result-
ing here.

8C. Generation by Location

Figures 5, 6, and 7 show the installed capacity and merit order
dispatch of power stations located at three nodes in the network.
It follows the expected pattern. The point raised in the previous
section is evident here. Installed capacity reached a maximum
well before the extreme peak period.

8D. Network Flows

The average power flow for each link over time is shown in
Figure 8. A negative number indicates that the direction of flow
is the reverse of that implied in the name. For example, for link
N1-N4, the flow is from N4 to N1.

The flow is steady over time for some links because they repre-
sent major connections between demand and base load generation.
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Figure 5. Merit order generation at node 2.

Other flows vary over time, and one (N1-N2) reverses direction.
These links are associated with peaking and intermediate power
stations. The dynamics of power flows vary as these plants are
dispatched through the merit order process.

The average losses are shown in Figure 9. For the lines with
large steady loads, the losses are stable. For lines where power
flows vary and change direction, the losses vary over time.
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: N I 4 It 3 I 4 " '
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Q

Figure 6. Merit order generation at node 1.
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Figure 7. Merit order generation at node 4.

8E. Prices

As expected, the nodal prices are high in peak-load periods and
low in base-load periods (Figure 10).

An interesting feature occurs at the very peak demand periods.
Here, the welfare optimizing solution involves rationing demand
rather than increasing the capacity of plants to satisfy very high
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—
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— - —-NIN2

Figure 8. Average power flow by link (GW).
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Figure 9. Losses as a percentage of power flows.

demands for relatively short periods of duration. Consequently,
at the very peak demands prices increase even further.

There are some periods of time when relatively large differences
emerge between nodal prices.

The variation between nodal prices arising from capacity con-
straints on transmission and the peak load-type cost recovery of

Price (c/kWh)

0 : t t ; . : ; : : |
0 876 1752 2628 3504 4380 5256 6132 7008 7884 8760
Load duration (hours)

— — — _Price1 ___.__ Price2 Price3 ....... Price4

Figure 10. Nodal prices.
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Figure 11. Transmission prices by link.

transmission costs are evident in Figure 11. Transmission prices
are calculated as the revenue from buying and selling electricity
over the link in each time period divided by the average quantity
of power flow over the link during each period. This is the average
merchandising surplus® per unit of power.

At some points in time, the transmission price is negative. This
is the case referred to by Wu et al. (1996, p. 17), whereby economic
dispatch can require power to flow from a node with a high price
to one with a low price. In the presence of a transmission constraint
and with Kirchoff’s laws in operation, it is welfare maximizing
and economically efficient for one link to make a loss at a point
in time. This is because the change in power flow allows the genera-
tion and transmission of a lower cost source of electricity than
could be obtained otherwise, resulting in net economic benefits.

8F. Sales Revenue

The revenue from sales to customers in each load block is shown
in Table 3. This revenue is defined as the nodal price times the
quantity sold. This is derived from the Kuhn-Tucker condition in
Equation 11, in which total revenue is the nodal price times the
quantity demanded, based on the linear demand functions.

® Merchandizing surplus is a term used by Wu et al. (1996) and Chao and Peck (1996).
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Table 3: Revenue from Sales to Customers, by Node and
Load Block ($Million)

Node

Load block N1 N3 Total

B1 32.26 15.89 48.15
B2 10.23 4.79 15.02
B3 17.80 8.45 26.26
B4 22.54 11.07 33.61
B5 38.32 18.90 57.22
B6 26.89 13.13 40.01
B7 40.10 19.71 59.80
B8 52.21 24.02 76.22
B9 49.37 24.84 74.21
B10 65.43 33.21 98.64
Bl11 78.63 43.32 121.95
B12 118.94 71.62 190.56
B13 104.56 58.89 163.45
B14 103.28 50.59 153.87
B15 114.35 76.63 190.98
B16 106.53 74.41 180.94
B17 80.09 54.64 134.73
B18 60.31 41.58 101.89
B19 46.75 39.84 86.59
B20 37.65 32.89 70.55
B21 29.28 25.96 55.23
B22 27.42 21.95 49.37
B23 26.32 20.74 47.06
B24 26.15 20.53 46.68
B25 26.69 17.05 43.74
B26 15.12 7.40 22.52
B27 19.21 9.45 28.65
B28 14.06 6.85 20.90
B29 13.52 6.59 20.11
B30 16.44 7.93 24.36
B31 12.50 6.05 18.55
B32 8.54 4.14 12.68
B33 6.17 3.01 9.18
B34 4.42 2.16 6.58
Total 1452.05 878.23 2330.28

As will be shown, the revenue from sales to customers is ulti-
mately paid to the transmission network and generators.

The cost of generation (2144.35 in Table 5) plus the cost of
transmission (185.93 in Table 4) is equal to the total value of sales
to customers (2330.28 in Table 3).
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8G. Transmission Revenue and Cost

Table 4 shows the revenue paid to each link of the transmission
network.

This revenue is referred to as merchandising surplus by Wu et
al. (1996) and Chao and Peck (1996). It is the difference between
the revenue from sales (exports from the network) and the cost
of energy imported (injected) into the network. For both the entire
network and each link, the revenue received is equal to the total
cost of transmission (including any rents arising from the number
of lines on the link being constrained). This is a zero profit condi-
tion on the network and each link, and is based on the Kuhn-
Tucker conditions in Equation 18.

A point to note is that some nodes received negative revenue
in some periods (load blocks). This situation arises when power
flows along a line from a node with high price to one with a lower
price. The reason this occurs is because of the externality arising
from the power flow equations (based on Kirchoff’s laws) when
there are transmission capacity constraints. For instance, the flow
of power from node 2 to node 1, node 1 to node 4, and node 1
to node 3 enables more power to flow from node 2 to node 4.
These power transfers help alleviate the congestion between node
2 and node 3. This enables consumers to source lower cost electric-
ity, with some of the savings used to offset the loss on the power
flows that made it possible.

8H. Generation Revenue and Costs

The revenues received for total generation at each node in each
load block are shown in Table 5. The grand total for all nodes is
2144.35. This result is based on the second Kuhn-Tucker condition
in Equation 12, where the revenue received at the node for local
generation is equal to the revenue paid for local generation.

The revenue received at each node is then paid to the individual
generators that produce power at each node in each load block,
as shown in Table 6.

This revenue is the product of the nodal price and the output
of each plant in each load period. This result is embedded in the
second Kuhn-Tucker condition in Equation 13.

Table 7 shows the total short-run operating costs of power
stations in each load block. These results are also embedded in
the Kuhn-Tucker condition in Equation 13.
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Table 4: Revenue Received by the Transmission Network and Transmission

Cost ($Million)

Revenue received by each link

Total
NI-N2 NI-N3 NI1-N4 N2-N3 N3-N4 revenue
Load block
B1 0.01 0.08 0.44 0.06 0.03 0.61
B2 0.20 -0.13 0.15 0.25 0.00 0.47
B3 0.25 -0.15 0.25 0.32 0.00 0.68
B4 0.01 0.04 0.31 0.04 0.02 0.41
BS 0.01 0.11 0.52 0.07 0.03 0.74
B6 0.08 —0.01 0.37 0.13 0.02 0.59
B7 0.01 0.07 0.55 0.06 0.03 0.73
B8 1.38 -0.92 0.77 1.71 —0.03 2.90
B9 -0.03 0.44 0.65 0.20 0.06 1.33
B10 —0.06 0.76 0.85 0.32 0.10 1.97
Bl11 —0.34 3.02 0.90 1.11 0.27 4.96
B12 0.50 8.33 1.15 5.37 0.67 16.02
B13 2.31 4.81 1.15 6.35 0.41 15.04
Bl14 0.04 0.17 1.69 0.15 0.10 2.15
B15 —1.40 13.16 0.83 4.35 1.01 17.95
B16 —-1.21 14.72 0.66 4.44 1.12 19.73
B17 —0.60 10.67 0.55 2.92 0.81 14.35
B18 —0.44 8.37 0.40 2.26 0.64 11.22
B19 -0.52 11.70 0.01 3.03 0.86 15.09
B20 -0.21 10.32 —0.03 241 0.76 13.25
B21 —0.01 8.52 -0.05 1.82 0.63 10.91
B22 0.05 6.27 0.07 1.28 0.47 8.13
B23 0.26 6.13 0.07 1.04 0.46 7.95
B24 0.43 6.24 0.07 0.89 0.46 8.10
B25 0.26 3.26 0.27 0.43 0.25 4.46
B26 0.00 0.03 0.82 0.00 0.04 0.90
B27 0.00 0.03 1.10 0.00 0.06 1.19
B28 0.00 0.02 0.83 0.00 0.04 0.90
B29 0.00 0.02 0.83 0.00 0.04 0.89
B30 0.00 0.03 0.69 0.00 0.04 0.75
B31 0.00 0.02 0.54 0.00 0.03 0.59
B32 0.00 0.01 0.38 0.00 0.02 0.42
B33 0.00 0.01 0.29 0.00 0.01 0.32
B34 0.00 0.01 0.23 0.00 0.01 0.25
Total revenue 1.00 116.16 18.28 41.02 9.47 185.93
Transmission costs
Rent for the lines 0.00 92.19 0.00 15.97 0.00 108.16
Line construction cost 1.00 23.97 18.28 25.05 9.47 77.77
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Table 5: Revenue Received for Energy Produced at Each Node, by Load
Block ($Million)

Load block N1 N2 N4 Total

B1 24.21 8.62 14.71 47.54
B2 7.68 2.22 4.65 14.55
B3 13.37 4.11 8.11 25.58
B4 16.92 6.01 10.27 33.20
B5 28.76 10.24 17.47 56.47
B6 20.18 6.99 12.25 39.43
B7 30.10 10.70 18.28 59.08
B8 39.19 10.40 23.74 73.32
B9 37.06 13.30 22.53 72.88
B10 49.12 17.68 29.87 96.67
Bl1 59.02 21.95 36.02 117.00
B12 89.28 30.55 54.71 174.54
B13 78.49 21.98 47.94 148.41
B14 77.50 27.46 46.77 151.73
B15 87.12 32.22 53.69 173.03
B16 82.89 27.09 51.22 161.21
B17 63.72 17.33 39.34 120.38
B18 48.14 12.80 29.73 90.67
B19 37.60 10.36 23.54 71.51
B20 30.95 6.94 19.42 57.30
B21 24.48 4.47 15.38 44.33
B22 23.04 3.59 14.61 41.24
B23 22.85 1.85 14.42 39.11
B24 23.27 0.52 14.79 38.58
B25 23.94 15.34 39.28
B26 13.36 8.26 21.62
B27 16.39 11.07 27.46
B28 11.66 8.34 20.01
B29 10.87 8.34 19.21
B30 12.80 10.81 23.61
B31 9.45 8.51 17.96
B32 6.22 6.04 12.26
B33 4.27 4.59 8.86
B34 2.76 3.57 6.33
Total 1126.65 309.37 708.32 2144.35

The difference between the revenue received and the operating
cost in each load block is the gross margin for the plant. These
are shown in Table 8, and represent a contribution towards the
capital cost of each power station. The sum of these over all load
blocks is the total gross margin. Again, these results arise from
the Kuhn-Tucker condition in Equation 13.
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Table 9: Summary of Power Station Revenue and Costs ($Million)

Total Total Construction Plant
revenue variable cost' costs’ capacity rents’

P1 286.93 135.19 135.37 16.37
P2 214.14 105.59 107.07 1.47
P3 625.58 312.05 293.31 20.22
P4 30.67 15.36 15.31
P5 83.94 57.12 26.65 0.17
P6 84.09 49.95 34.15
P8 185.27 83.64 101.63
P9 225.33 109.25 110.86 522
P10 297.72 135.51 157.69 4.52
P12 110.68 57.38 35.53 17.77

! Total variable costs that include fuel costs and other variable costs of running power
station.

* Construction costs that are equal to the annualized cost of building the power station
of the capacity installed.

3 Plant capacity rents are the rents accruing because the installed capacity of the power
station is at the maximum allowed.

Table 9 shows that the revenue received by each power station
is equal to total variable cost plus construction costs and plant
capacity rents. It shows that there are zero profits. The plant
capacity rents represent the opportunity cost of the limit on in-
stalled capacity of the particular power station. Together, Kuhn-
Tucker conditions in Equation 13 and 14 determine these results.

9. CONCLUSION AND FURTHER RESEARCH

The model presented here provides insights into economic is-
sues arising in electricity markets. It has integrated demand, trans-
mission, and generation into a single model to simulate the eco-
nomically efficient operation of an electricity market.

The pricing rules embodied in this long-run model allow nodal
and transmission prices to be optimized over time and space. In
this model, the costs of generation and transmission are fully re-
covered.

In the illustrative example, transmission prices fluctuate consid-
erably, reflecting the externality effects of Kirchoff’s laws on the
flows of electricity embedded within a peak-load pricing approach
to transmission cost recovery.
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The approach used here contrasts with other models of transmis-
sion pricing where losses play a key role in determining nodal
prices and Kirchoff’s laws are omitted.

This model provides a framework against which to assess other
approaches to transmission pricing, such as Backerman, Rassenti,
and Smith (1996), and the approach being proposed by the Austra-
lian National Electricity Code (NEMMCO, 1996).

Future research could use the framework in this paper to com-
pare the models of transmission pricing arrangements being pro-
posed for access pricing to electricity network in deregulated elec-
tricity markets.
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