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This article proposes a method to accommodate asymmetric information on farmers’ risk preferences in
designing voluntary environmental policies. By incorporating stochastic efficiency rules in a mechanism
design problem, the government can find incentive-compatible policies by knowing only the general
class of risk preferences among farmers. The model also accounts for hidden information on technology
types and input use. The method is applied empirically to simulate a pollution control program in New
York. Results suggest that participation incentives would be inadequate for many risk-averse producers
if the government does not account for the diversity in risk preferences.
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Agricultural nonpoint source pollution re-
mains a significant policy challenge, with
obstacles that stem in large part from asym-
metric information. The ability to assess pro-
ducers’ responses to policies “. . . requires em-
pirical knowledge of the production function,
the environmental impacts of input use, and
the risk attitudes of producers . . .” (Leathers
and Quiggin, p. 763). The challenge is to de-
vise policies that function effectively when the
government’s information on these attributes
is limited.

One recently studied approach to finding
such policies is based on the principles of mech-
anism design (e.g., Wu and Babcock, 1995,
1996; Peterson and Boisvert, 2001a,b). In cases
where pollution and commodity outputs de-
pend on input levels as well as a farmer’s pri-
vately known “technology type,” these authors
propose voluntary policies designed to give
farmers the incentive to truthfully reveal their
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private information. The government is aware
of the different technology types but cannot
(or chooses not to) match them to individ-
ual farmers. Instead, the government designs a
policy “menu” consisting of (input level, gov-
ernment payment) pairs, and the policy prob-
lem is to design this menu so that farmers
of different types self-select the appropriate
policies. Feasible policies in this problem must
satisfy two kinds of constraints, which ensure
that farmers of each type would benefit by:
(a) participating in the program and (b) select-
ing the policy designed for their type over other
policies.

Although promising, these proposals
address only the hidden information on
technology types. In practice, a farmer’s
incentive to truthfully reveal information on
technology depends on other attributes that
are also hidden from the government, such
as risk preferences. Leathers and Quiggin
caution that agricultural commodity and envi-
ronmental policies may well have unintended
consequences unless one knows something
quite specific about a producer’s utility func-
tion. For example, policy responses depend
on whether producers exhibit decreasing or
increasing absolute risk aversion (DARA and
IARA, respectively), so that changes in inputs
and environmental quality can only be pre-
dicted if we know “. . . how many farmers are
DARA? how many are IARA? how many are
‘extremely’ DARA? and how many are only
‘slightly’ DARA?” (Leathers and Quiggin,
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p. 673). Even then, the results are only qualita-
tive unless a specific functional form for utility
is assumed. More recently, other authors have
underscored the fact that risk preferences are
likely to have a significant empirical impact on
input use and policy responses (Isik; Roosen
and Hennessy). All these authors are silent
on what can be done when obtaining such
detailed information about risk preferences is
impossible or prohibitively costly.

In the broader mechanism design litera-
ture, unknown preferences have been dealt
with in two major ways. The first approach is
to characterize the mechanism with a utility
function whose form is left unspecified (e.g.,
Townsend and Mueller). While this method
can be used to derive general properties of a
mechanism, its limitation is that it cannot be
applied to compute a mechanism in practice.
The other approach is to assume a particular
functional form for utility. Under certain con-
ditions, this approach does lead to computable
mechanisms (Rochet and Stole), allowing it to
serve as the basis for empirical applications of
mechanism design; naturally, the danger is that
empirical results would be misleading because
preferences are misspecified.

This article proposes a new method to ac-
commodate limited information on agent pref-
erences in policy design. The government’s
policy goal is for farmers to truthfully reveal
their privately known technology type when
risk preferences are treated as an additional
piece of hidden information. By incorporat-
ing stochastic efficiency criteria in a mecha-
nism design problem, the government need
only know the general class of preferences
among agents (e.g., money-loving and risk-
averse) and the support of their income dis-
tributions. If a solution to the government’s
problem exists, it ensures that all agents in
the chosen class will truthfully reveal their pri-
vate information on technology. Although we
apply this method to pollution control poli-
cies, it is equally applicable to other mech-
anism design problems where decision mak-
ers are faced with substantial risk, and where
it is believed that many or all of them are
risk averse (e.g., designing insurance or credit
institutions).

By appealing to stochastic efficiency criteria,
we address the specific concerns of Leathers
and Quiggin and others mentioned above. Our
mechanism leads to policies that “get it right”
for producers in any given range of risk aver-
sion. We are assured that the policies provide
the appropriate incentives to change inputs

and environmental quality in the anticipated
and desired directions. It is well understood
that these policies are likely to be more costly
than if preferences are known. By comparing
policies estimated from two limiting assump-
tions (one where all producers are risk neutral
and a second, where all we know is that produc-
ers are risk averse), we can use our method to
assess the consequences (both monetary costs
and effects on environmental quality) of a pol-
icy design based on the wrong (or very specific)
assumption about risk aversion. The costs of
“getting it wrong” represent what the govern-
ment can afford to pay to collect more specific
data about risk preferences.

We also devote substantial effort to examin-
ing the conditions under which a solution will
exist and how it can be determined empirically.
We show that the model can be numerically
simulated under a broad range of conditions,
and we also derive an empirically testable nec-
essary condition for self-selection to be pos-
sible. Further, we demonstrate that in certain
cases the computational burden of the simula-
tions can be dramatically lowered. In all cases,
the stochastic efficiency approach leads to a
policy problem that can ultimately be solved
with linear programming methods.

In addition, we extend existing models by
accounting for hidden information on input
use. Past studies assumed that farmers could
not “cheat” on agreed input restrictions be-
cause the government perfectly observes in-
put use. This assumption may be valid if the
input in question is a discrete technology or
an input such as irrigation water that is regu-
larly metered. However, many polluting agri-
cultural inputs are very difficult to monitor. We
show that the “cheating” problem can be cir-
cumvented by setting payments that depend
on crop yield. This scheme shifts the moni-
toring burden to crop outputs that in many
instances are already publicly observed. Such
payments are in fact a logical extension of
many past commodity and insurance programs
in the United States, where payments were tied
to government-certified yields.

We apply our model to simulate a pollu-
tion control program for New York agriculture.
Our results suggest that diversity of risk prefer-
ences should not be ignored in designing such
a program: if the program were designed as-
suming all farmers are risk neutral, payments
would be too small for risk averse farmers to be
willing to participate. We also find that even if
payments could be conditioned on monitored
input levels, government costs would not be
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appreciably higher if payments were condi-
tioned on monitored output levels instead.

Conceptual Model

Consider a region where nonpoint pollution is
generated from an input used for some crop
(e.g., fertilizer in corn production). Different
production technologies in the region (e.g., soil
types) are indexed by i ∈ �. Crop yield per acre
for technology i obeys yi = yi(x, bi), where x
represents a random uncontrollable input such
as rainfall and bi is the controllable polluting
input. bi, which may or may not be publicly ob-
servable, could represent a continuously vari-
able input such as fertilizer, or it could be a
binary variable representing some production
practice. Emissions of pollution ei are jointly
produced with output, so that ei = gi(x, bi, yi).
In exchange for setting bi at some prescribed
level, the government offers payments to farm-
ers of s − tyi per acre. Net income per acre for
technology i is then

mi = (py − t)yi (x, bi ) − pbbi − k + s

≡ �i (x, bi , t) + s
(1)

where py and pb are output and input prices,
respectively, k is fixed cost, and �i(x, bi, t) is
production profit per acre. Let the support of
x be the interval [ x

¯
, x̄] and assume that x and

bi are defined such that �i
x > 0 and de/dbi =

gi
b + gi

yyi
b ≥ 0 for all i.

Farmers also differ by their risk prefer-
ences. Each farmer selects bi by solving:
maxbi

{
Eu(mi )

}
, where E is the expectation

with respect to x and u(·) belongs to some set
� of continuous, real-valued utility functions.
Letting bi(t, s) represent the solution to the
farmer’s problem, the maximized value of the
objective function is denoted Eu(mi(t, s)) ≡
Eu(�i(x, bi(t, s), t) + s). If emissions are a
negative externality, the pre-policy input level
bi(0, 0) (and consequently ei) exceeds the so-
cially optimal level; suppose the government
wishes to implement b∗

i ≤ bi (0, 0) as the tar-
get input level for technology i.1

Although the government is assumed to
know the possible types of farmers (i.e., the
elements of � and �), it may not know which
farmers are of each type. It must create a pol-

1 The method for finding this target level is not modeled explic-
itly. In practice, the choice is often made through a second-best
standards approach, where input targets are set to meet some pre-
determined emissions target (Baumol and Oates).

icy menu that induces farmers of type i to meet
the input target b∗

i through voluntary actions.
Designing this menu can be viewed as a two-
staged game of imperfect information, where
the government chooses a set of policies for
the menu in the first stage, and farmers select
from these policies in the second stage (Smith
and Tomasi).2 The government must solve this
game by backward induction; setting policies
in the first stage requires predictions of how
farmers will respond in the second stage. In our
model, a policy can be described by an ordered
pair (t, s).

This policy formulation differs from past
studies in that government payments depend
on crop yield (−t is a marginal output pay-
ment). Previous studies considered only a fixed
payment s in exchange for setting inputs at b∗

i ,
implicitly assuming that the government can
perfectly monitor inputs to guarantee farmers
will comply with the target input levels.3

The government’s problem is to find a set of
policies {(ti, si): i ∈ �} satisfying the following
constraints:

bi (ti , si ) ≤ b∗
i for all i ∈ �, u ∈ �(2)

Eu(mi (ti , si )) ≥ Eu(mi (0, 0))
for all i ∈ �, u ∈ �

(3)

Eu(mi (ti , si )) ≥ Eu(mi (t j,s j ))
for all i, j ∈ �, u ∈ �.

(4)

Equation (2) represents self-compliance con-
straints. Policies must be set so that privately
optimal input use is no larger than the socially
desirable level. The participation constraints in
(3) require that post-policy expected utility is
at least as large as pre-policy expected utility.
The self-selection constraints in (4) guarantee
that expected utility for type i’s own policy ex-
ceeds the expected utility for all other policies.

2 In general, this game involves the government and all produc-
ers, so that any farmer’s choice may depend strategically on the
choices of all other farmers. If all policy options are available to
any farmer regardless of others’ choices, and the distributions of
technology and risk attitudes are independent, this strategic inter-
dependence can be ignored and the policy becomes a large number
of two-player games between the government and each producer.

3 Output-dependent payments require monitoring of yields,
which are, generally, much easier to observe than inputs and need
to be measured only once a year. In cases where neither input
nor output can be observed, the alternative is to use random spot
checks on target input levels and assess penalties on violators.
This is the typical approach for industrial-type emissions that oc-
cur continuously or at least very frequently (e.g., Malik; Florens
and Foucher). The mechanism design below could be modified to
accommodate spot checks and penalties; these modifications are
described in a supplement available from the authors.
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Figure 1. Geometry of stochastic efficient input levels

This combination of constraints is the most
general case where the government has limited
information on input use, technology types,
and risk attitudes. Complete information in
any one of these areas is a nested case where
one set of constraints can be ignored. For ex-
ample, if the government has complete in-
formation on technology types, then policies
could be assigned to individual farmers, so that
a type-i farmer would have only the choices of
the policy (ti, si) or not participating. In this
case, the self-selection conditions in (4) could
be ignored. The special cases and their pol-
icy consequences are discussed in more detail
below.

Stochastic Efficiency Representation

The primary limitation of the formulation
above is that it is difficult to implement.
To compute a feasible policy, the constraints
would have to be evaluated for all u ∈ �, a
prohibitive number of computations in most
applications where the set of admissible util-
ity functions is extremely large. Such an enu-
meration can be avoided using stochastic ef-
ficiency criteria. For several specifications of
�, the statement that Eu(m) ≥ Eu(m′) for all
u ∈ � can be equivalently expressed by a single
stochastic efficiency condition on the distribu-
tions of m and m′.

An appropriate such condition in our case
is that of second-degree stochastic dominance
(SSD). A cumulative distribution G(m) dom-
inates H(m′) by SSD if and only if the area
under G is nowhere more than that of H

and somewhere less than the area under H:∫ m̃
−∞ G(m) dm ≤ ∫ m̃

−∞ H(m ′) dm ′ for all m̃, with
strict inequality somewhere. Dominance by
SSD is equivalent to greater expected utility
for all increasing and concave utility functions
(Hadar and Russel).4 In our model, the cu-
mulative distribution function (cdf) of income
takes the form

Fi (m; b, t, s) ≡ Pr{�i (x, b, t) + s ≤ m}.(5)

Type i farmers face an income distribution Fi
that is conditioned on the values of b, t, and s.

One consequence of unknown risk pref-
erences is that the optimal input level can-
not be uniquely predicted. In an SSD setting,
the candidates for an optimal input level are
those that generate income distributions that
are not dominated by any other distribution.
These input levels comprise what is known as
the second-degree stochastic efficient (SSE)
set. Among the three input levels depicted in
figure 1, both b and b′ belong to the SSE set but
b′′ does not: b′′ is dominated by both b and b′
but neither b nor b′ are dominated.5 As shown
by the dashed curves in figure 1, the value of s
does not influence the SSD rankings of input

4 Formally, if G(m) dominates H(m′) by SSD, then Eu(m) ≥
Eu(m′) for all continuous and twice differentiable u(·) with u′ > 0
and u′ ′ ≤ 0 (Hadar and Russell, p. 31). Other stochastic efficiency
criteria exist for other specifications of the utility set �. For exam-
ple, Meyer has discovered a set of criteria, named stochastic dom-
inance with respect to a function, which can order distributions
when the coefficient of absolute risk aversion lies in a specified
range.

5 b does not dominate b′ because Fi(m; b, t, 0) starts to the left
of Fi(m; b′, t, 0), and b′ does not dominate b because area A is
smaller than area B.
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levels because any s > 0 would shift all the cdfs
by the same distance. Therefore, group i’s SSE
set depends only on t; let Bi(t) ⊂ �+ denote
the optimal input correspondence for group i.

To illustrate the use of SSD in the policy
scheme, consider two groups (i.e., � = {1, 2}).
The government must choose policies (t1, s1)
and (t2, s2) to implement the input targets
b∗

1 and b∗
2. The constraints (2)–(4), written in

terms of SSD, require the policies to satisfy

bi ≤ b∗
i ∀bi ∈ Bi (ti ), i = 1, 2(6)

Fi (m; bi , ti , si ) � Fi
(
m; b0

i , 0, 0
)

∀bi ∈ Bi (ti ), ∀b0
i ∈ Bi (0), i = 1, 2

(7)

F1(m; b1, t1, s1) � F1
(
m; b2

1, t2, s2
)

∀b1 ∈ B1(t1), ∀b2
1 ∈ B1(t2)

(8)

F2(m; b2, t2, s2) � F2
(
m; b1

2, t1, s1
)

∀b2 ∈ B2(t2), ∀b1
2 ∈ B2(t1)

(9)

where “�” denotes dominance by SSD. The
self-compliance constraints in equation (6) re-
quire each ti to be set so that the SSE set of
input levels lies entirely below b∗

i . The partic-
ipation constraints in equation (7) require the
post-policy distributions of income to domi-
nate the pre-policy distributions. Similarly, the
self-selection constraints in equations (8) and
(9) require group i’s distributions of income
under the policy (ti, si) to dominate those un-
der (tj, sj).

When written in stochastic efficiency terms,
the constraints reveal that unknown risk at-
titudes affect the policy in two ways. First,
producers with different risk preferences will
make different program enrollment decisions
when presented a given policy menu. To ac-
count for this fact, the policy designer must
compare the entire distributions of returns
Fi(·) for the different menu items, rather con-
sidering only one statistic such as mean returns.
Second, different producers’ input responses
to a particular menu item will also differ. This
requires the designer to evaluate each con-
straint over a range of stochastic efficient input
levels bi ∈ Bi(·). In essence, feasible payments
include a magnified risk premium that has two
“layers,” implying that ignoring risk and/or risk
aversion is likely to lead to policies that are not
incentive compatible.6

6 To illustrate, consider the participation constraint in equa-
tion (7). Given a ti, si must be large enough so that the policy (ti, si)
dominates (0, 0). If risk neutrality is assumed, participation could

Computational Method for Finding Policies

The SSD conditions also suggest a computa-
tional procedure for finding policies. Given a
random sample of x, SSD comparisons can be
made numerically using income distributions
generated from the sample points (Anderson,
Dillon, and Hardaker). The steps in the proce-
dure are as follows:

1. Find the pre-policy SSE input sets B1(0)
and B2(0). For group i, fix ti = 0 and dis-
cretize the domain of input levels. Then se-
lect two input levels bi and b′

i in the domain
and compare the distribution Fi(m; bi, 0, 0)
to Fi(m; b′

i , 0, 0) based on SSD. After re-
peating this comparison for all (bi, b′

i ) pairs,
Bi(ti) can be identified as the set of bi’s that
were never dominated.

2. Find ti sufficiently large so that (6) holds.
For each i, repeat the procedure in step 1
for successively larger values of ti > 0 until
Bi(ti) lies entirely below b∗

i .
3. Find the restrictions imposed on si by the

participation constraints in (7). This re-
striction is depicted in figure 2. Fi(· , 0, 0)
represents a pre-policy distribution of in-
come associated with an input level in
Bi(0), and Fi(· , ti, 0) is an income distribu-
tion for an input level in Bi(ti) but with
no acreage payment (i.e., under the pol-
icy (ti, 0)). An acreage payment of si > 0
will shift the distribution to the right
in a parallel fashion, as shown by the
curve Fi(· , ti, si). The participation con-
straint says that si must be large enough
so that Fi(· , ti, si) dominates Fi(· , 0, 0) by
SSD, which implies that area A in the fig-
ure must exceed area B. By iterating over
the input levels in the sets Bi(0) and Bi(ti),
the smallest value of si that satisfies (7) can
be found numerically. Denoting this mini-
mum value Pi, the participation constraints
reduce to si ≥ Pi.

4. Find the restrictions on si imposed by the
self-selection constraints in (8) and (9). For
each i, this requires knowledge of the cross-
policy input set Bi(tj), which can be com-
puted similarly to the procedure in step 2.

be secured by a payment of s̄i = E�i (x, b0, 0) − E�i (x, bi , 0),
where b0 and bi are the solutions to max{E�i(x, b, 0)} and
max{E�i(x, b, ti)}, respectively. But if farmers are risk averse in
reality, this payment will generally be insufficient because it does
not include a risk premium. Based on the usual definition, the risk
premium required is the value ri such that Fi (m; bi , ti , s̄i + ri ) �
Fi (m; bi , 0, 0). However, this risk premium is generally not large
enough because the SSD condition must hold for all bi ∈ Bi(ti) and
b0 ∈ Bi(0).
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Figure 2. Geometry of the participation constraint

The self-selection condition is depicted in
figure 3. Initially assuming that si = sj = 0,
the distributions Fi(· , ti, 0) and Fi(· , tj, 0)
in the figure represent incomes for some
bi ∈ Bi(ti) and some bj

i ∈ Bi(tj), respec-
tively. Assuming that the policy (tj, 0) is
preferred to (ti, 0), as shown in the figure, si
must be enlarged to s̃i , so that Fi (·, ti , s̃i ) �
Fi (·, t j , 0). Letting Ii represent the small-
est value of s̃i satisfying this condition over
all admissible bi and bj

i’s, group i’s self-
selection constraint (when sj = 0) becomes
si ≥ Ii. If sj > 0, the income distribution
under group j’s policy shifts to the right
by sj units, as shown by the dashed curve
Fi(· , tj, sj). In this case the SSD condition
requires si to be enlarged by an extra sj
units, implying the constraint si ≥ Ii + sj.

Figure 3. Geometry of the self-selection constraint

5. Find the acreage payments si that meet the
restrictions found in steps 3 and 4. The
government’s minimum cost acreage pay-
ments can be found by solving the follow-
ing linear program:

Minimize a1s1 + a2s2(10)

subject to: si ≥ Pi , i = 1, 2(11)

si ≥ Ii + s j , i = 1, 2(12)

where ai is the number of acres of land in
group i. This problem is depicted in fig-
ure 4. The constraints in (11) require that
s1 is on or to the right of the vertical line at
P1 and that s2 is on or above the horizontal
line at P2. The constraints in (12) require
s1 to lie on or to the right of the 45-degree
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s2

c d

I1

I2

s1

a1 s1+ a2 s2

P2

P1

s1 = I1 + s2

s2 = I2 + s1

-I2

Figure 4. Geometry of the policy design
problem

line starting at I1 and s2 to lie on or above
the 45-degree line starting at I2. For the sit-
uation depicted in the figure, the feasible
region is the shaded area and the objective
function is minimized at point d.

This five-step procedure reveals that ti and si
need not be computed simultaneously (for in-
stance, using a grid search) but instead can be
found in a sequence of self-contained compu-
tational tasks. Such a sequence is possible be-
cause si (which is determined in steps 3–5) does
not affect the SSD ranking of input levels (see
figure 1), and therefore does not affect the pre-
policy input levels (step 1) or the feasible level
of ti (step 2). Although it has been outlined for
the two-group case, the procedure can also be
extended to higher-dimension problems.7

Existence of a solution in step 5 requires the
feasible region to be nonempty, which will be
true in general if: (a) P1 and P2 are finite, and
(b) I1 ≤ –I2 (see figure 4). The first of these
conditions holds by assumption, while the sec-
ond depends on the technologies of the two
groups. A necessary condition for existence
can be derived as follows. There are two nec-
essary conditions for one distribution to dom-
inate another by SSD: neither the mean of the
dominant distribution nor its lowest observa-
tion may be smaller (Anderson, Dillon, and

7 With additional groups, the computational burden increases
linearly in steps 1−2, because the pre-policy input levels and the
ti’s must be determined separately for each of n groups. Similarly,
the participation constraints in step 3 must be found for each i =
1, . . . , n. In step 4, there would be a total of n!/(n − 2)! self-selection
constraints to find, one for each (i, j) pair.

Hardaker). For the self-selection constraints in
(8) and (9), these requirements can be written:
E�i(x, bi, ti) + si ≥ E�i(x, bi

j, tj) + sj and �i( x
¯

,
bi, ti) + si ≥ �i( x

¯
, bi

j, tj) + sj, where bi ∈ Bi(ti)
and bi

j ∈ Bi(tj). Equivalently, si must equal or
exceed the larger of [E�i(x, bi

j, tj) − E�i(x, bi,
ti)] + sj and [�i( x

¯
, bi

j, tj) − �i( x
¯

, bi, ti)] + sj,
for all permissible bi and bi

j. Thus, Ii is at least
as large as:

Ĩi = max
b j

i ∈Bi (t j ),
bi ∈Bi (ti )

{
E�i

(
x, b j

i , t j
) − E�i

(
x, bi , ti

)
,

�i
(

x
¯
, b j

i , t j
) − �i ( x

¯
, bi , ti )

}
.

(13)

The necessary condition for separate self-
selecting policies to exist is that Ĩ1 ≤ − Ĩ2. This
condition requires some measure of group 2’s
loss in returns (either in terms of the mean
or the lower tail of the distribution) to ex-
ceed group 1’s loss. That is, one technology is
required to be more productive in a stochas-
tic sense. This requirement is an instance of
the more general “single-crossing property”
encountered in the literature (Mas-Collel,
Whinston, and Green).

The Government’s Policy Alternatives

As mentioned above, the constraints in equa-
tions (6)–(9) encompass several special cases
that reflect different levels of government in-
formation. The government’s information set
varies along three dimensions. First, the gov-
ernment may or may not be able to observe
input levels. If observing inputs is impossible
or prohibitively costly, but outputs can be ob-
served instead, then the government can set
a marginal output payment (−ti) that gives
farmers the incentive to self-comply. If inputs
can be observed, the government can directly
condition payments on compliance with the
target input level b∗

i , in which case the self-
compliance constraints (equation (6)) can be
ignored and payments need not depend on out-
put (i.e., ti = 0).

Second, the government’s level of informa-
tion on farmers’ technology types may vary.
If the government does not know individual
farmers’ technology types, then the govern-
ment can set acreage payments si to ensure
self-selection (at least under certain conditions
as shown above).8 Assuming input monitoring

8 If self-selection is desired, the government has a commitment
problem, in that producers may believe policies will be assigned to
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and b∗
1 < b∗

2, Peterson and Boisvert (2001b)
showed that the minimum-cost self-selecting
payments always occur at point d in figure 4.
If the government has complete information
on technology types, it could assign policies to
each technology group and the self-selection
constraints (equation (7)) could be ignored.
The minimum cost payments would then be
at point c in figure 4. These results imply that
technology information is valuable to the gov-
ernment because it could be used to reduce
payments (point c is less costly than point d).
However, even if this type of information al-
ready exists, the government may avoid using
it to differentiate policies across farmers due
to political constraints (Chambers).

The third dimension concerns information
on risk attitudes. Policies based on SSD are
conservative in the sense that the government
is assumed to know nothing about risk atti-
tudes other than that farmers are risk averse—
the government believes that a farmer’s risk
aversion coefficient, r(m), could lie anywhere
in the range [0, ∞).9 In some cases, informa-
tion on risk attitudes is more precise because
r(m) is known to lie in a narrower range (e.g.,
based on empirical studies of risk behavior).
Policies can be conveniently computed in these
cases by replacing SSD in the procedure above
with what is now called stochastic dominance
with respect to a function (Meyer; see foot-
note 4). Doing so for various assumed bounds
on r(m) would trace out the relationship be-
tween better knowledge of risk attitudes and
government cost.

The Case of Simply Related Variables

While the SSD formulation is feasible to imple-
ment numerically as outlined above, the com-
putations can be dramatically simplified under
certain conditions. This simplification is due to
the concept of simply related random variables
(Hammond). Two random variables are simply
related if their cdf’s cross at most once. Each of
the SSD conditions in (7)–(9) compares some
random variable of the form m = �i(x, b, t) + s
to another random variable m′ = �i(x, b′, t′) +
s′ (e.g., for the participation constraint (7),
t = ti, s = si and t′ = s′ = 0). The following

them once they reveal their type by selecting a policy. This prob-
lem could be avoided through the use of a multiple-year, binding
contract, although the government would still know the farmer’s
type for future contract periods. We are indebted to a reviewer for
making this observation.

9 This coefficient is defined as r(m) = −u′ ′(m)/u′(m); it is positive
for risk-averse individuals.

result describes a sufficient condition for the
cdf’s of these random variables (Fi and F ′

i , re-
spectively) to intersect only once, for a given
combination of (b, t) and (b′, t′).

RESULT 1. If �� = �i
x(x, b, t) − �i

x(x, b′, t′)
is positive (negative) for all x, then Fi and F′

i
intersect at most once, and Fi intersects F′

i from
above (from below) if the distributions do cross.

Proofs for this and all other results are given
in the Appendix.

Intuitively, the simply related property fol-
lows from the one-to-one relationship between
x and income: each realization of income is as-
sociated with a unique value of x, and larger
incomes are associated with larger x’s because
�i

x > 0. If �� > 0, then a given change in x
causes a larger change in m than in m′, so that
Fi is geometrically “flatter” and can only inter-
sect F ′

i from above. The opposite case is where
�� < 0, so that Fi is “steeper” than F ′

i . If ��

switches sign somewhere in the domain of x,
then Fi and F ′

i may intersect more than once.
Although the condition in Result 1 must be

checked empirically and is not guaranteed to
hold, it is not unlikely. Kramer and Pope ar-
gued that the simply related property holds for
many agricultural applications. This property is
actually guaranteed if inputs can be monitored
(so that t = t′ = 0) and yi

xb does not change sign
in the domain of x, because �� is positive (neg-
ative) for all x if and only if yi

xb is positive (neg-
ative). Peterson and Boisvert (2001b) showed
that if yi

xb is positive (negative), then b is a risk
increasing (risk decreasing) input.

The advantage of simply related variables
is that the SSD conditions can be very easily
evaluated, because the two necessary condi-
tions for SSD are also sufficient. Formally:

RESULT 2. Suppose m and m′ are simply re-
lated, with cdfs Fi and F′

i , respectively. The suf-
ficient conditions for Fi to dominate F′

i by SSD
are: (i) m

¯
≥ m

¯
′ and (ii) Em ≥ Em′, where m

¯and m
¯

′ are the lowest observations with positive
probability.

This result has two useful implications for solv-
ing the policy problem in practice:

RESULT 3. Suppose that the profits at any two
input levels (i.e., �i(x, b, t) and �i(x, b′, t′)) are
simply related random variables. Then the SSE
set of input levels Bi(t) is a closed interval of real
numbers bounded by b

¯
(t) = arg maxb�i (x

¯
,b, t)

and b̄(t) = arg maxb E�i (x, b, t).
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RESULT 4. Consider a condition of the form

Fi (m; b, t, s) � Fi (m; b′, t ′, s ′)

∀ b ∈ Bi (t), b′ ∈ Bi (t ′).

(14)

If the two cdfs are simply related, then condi-
tion (14) is equivalent to the requirement:

s − s ′ ≥ max{E�i (x, b′, t ′) − E�i (x, b, t),
�i ( x

¯
, b′, t ′) − �i ( x

¯
, b, t) :

b = b
¯
(t), b̄(t), b′ = b

¯
(t ′), b̄(t ′)}.

(15)

Result 3 allows each of the SSE sets required
in steps 1 and 2 of the procedure above to be
found by solving two nonlinear maximization
problems. Result 4 simplifies the search for the
bounds Pi and Ii in steps 3 and 4, which involve
several SSD comparisons of the form in (14).
Even though each SSD condition must be sat-
isfied for all pairs (b, b′) ∈ Bi(t) × Bi(t′), a suffi-
cient condition for this to hold (equation (15))
involves computations at only four points (b is
either the upper or lower bound of Bi(t) and
b′ is either the upper or lower bound of Bi(t′)).
Result 4 also implies that if I1 and I2 are com-
puted using equation (15), then the condition
I1 ≤ −I2 is both necessary and sufficient for
self-selecting payments to exist.

Empirical Application to Nitrate Loss
from New York Corn Production

The model is applied to simulate a program to
reduce nitrate contamination of drinking wa-
ter in central New York. Nitrates reach water
supplies by leaching into aquifers and through
surface runoff following storm events. Ele-
vated levels of nitrate leaching and runoff in
the region are due in large part to the use of
nitrogen fertilizer on corn acreage. In the sim-
ulated program, corn producers would receive
payments in return for reductions in nitrogen
fertilizer use.

Empirical Model Components

Corn silage yield functions were estimated
from data collected at field trials run by the
Department of Soil, Crop, and Atmospheric
Sciences at Cornell University. The data in-
clude 276 observations of corn silage yield (y),
commercial fertilizer, manure application, and
growing season rainfall (x) at several sites in
New York over several crop years. Total nitro-
gen applied (b) was computed as the sum of

fertilizer and manure nitrogen. The soils at the
sites were divided into two groups (indexed by
i = 1, 2) based on their hydrologic characteris-
tics, which become the different technologies
in the simulations.10

To gain efficiency, the functions were esti-
mated in a pooled regression using a quadratic
specification. The model was fit by maximum
likelihood, with the parameters bounded so
that the derivative in x is positive to be con-
sistent with the theoretical model. The results
are:

y = −15.12
(−5.01)

+ 0.699dm
(1.56)

+ 25.71d2
(9.38)

+ 0.1001b
(6.67)

− 0.00024b2

(−6.09)

+ 0.000057d2b2

(2.04)
+ 1.51x

(10.08)
− 1.37d2x

(−9.59)

− 0.0007bx
(−1.40)

, R2 = 0.56

(16)

where t-ratios are in parentheses, and dm and
d2 are dummy variables for manure applica-
tion and group 2 soils, respectively. The in-
teraction terms d2b2 and d2x allow the shape
of the yield function in nitrogen and rainfall
to differ by group. The estimated coefficients
on d2b2 and d2x are both statistically differ-
ent from zero, and their signs imply that group
2 has a higher marginal product of nitrogen
but a smaller marginal product of rainfall. At
the data means, a one-pound increase in nitro-
gen increases yield by 0.023 and 0.038 tons/acre
for groups 1 and 2, respectively, while a one-
inch increase in rainfall raises yield by 1.42 and
0.05 tons, respectively. Additional details on
the data and estimation are given in Peterson
and Boisvert (2001b).

Profits for group i were simulated by equa-
tion (1), where the policy variable bi is nitrogen
from commercial fertilizer.11 In these simula-
tions, x takes on values from a sample of grow-
ing season rainfall observations at the Ithaca
weather station over the 30-year period 1963–
92. The prices py and pb were set at the mean
of observed corn silage and nitrogen prices (in
constant 1992 dollars) over the same 30 years,
where corn silage prices were imputed as a corn

10 Manure was credited with 3 pounds of nitrogen per ton to ob-
tain total nitrogen applied. 52 of the 276 observations are from
group 1, corresponding to Hydrologic Group A soils, while the
224 remaining observations (group 2) are from Hydrologic Group
B soils. Group A soils are coarser and more vulnerable to leaching
than B soils (Boisvert, Regmi, and Schmit).

11 Farmers were assumed to always apply 20 tons of manure per
acre to dispose of animal waste.



300 May 2004 Amer. J. Agr. Econ.

Table 1. Pre- and Post-Policy Fertilizer, Income, and Production, Various Policy Scenarios

Risk Aversion (SSD) Risk Neutrality

Output Input Output Input
Item Pre-Policy Monitoring Monitoring Pre-Policy Monitoring Monitoring

Assigned Policies by Soil
Fertilizer, group 1 83–92 46–55 55 83 55 55

(lb/acre)
Mean income, group 1 225–226 226 229 226 226 226

($/acre)
Mean yield, group 1 23.7–23.9 22.8–23.0 23.0 23.7 23.0 23

(tons/acre)
Fertilizer, group 2 127–139 70–82 82 127 82 82

(lb/acre)
Mean income, group 2 212–213 215 217 213 213 213

($/acre)
Mean yield, group 2 23.8–24.0 22.2–22.7 22.7 23.8 22.7 22.7

(tons/acre)
Uniform Policy

Fertilizer, group 1 83–92 39–48 55 83 48 55
(lb/acre)

Mean income, group 1 225–226 228 248 226 226 241
($/acre)

Mean yield, group 1 23.7–23.9 22.5–22.8 23.0 23.7 22.8 23
(tons/acre)

Fertilizer, group 2 127–139 70–82 55 127 82 55
(lb/acre)

Mean income, group 2 212–213 215 219 213 213 213
($/acre)

Mean yield, group 2 23.8–24.0 22.2–22.7 21.6 23.8 22.7 21.6
(tons/acre)

grain equivalent. Other costs k were based on
enterprise budgets from USDA and Schmit.

Nitrate emissions were defined as the sum
of leaching and runoff: ei = ei

R + ei
L. Emissions

were simulated using a recursive system esti-
mated by Boisvert, Regmi, and Schmit, of the
form

ei
R = eR(bi , x, ci ), ei

L = eL
(
bi , x, ci , ei

R

)
.(17)

x contains four weather variables (total annual
rainfall; rainfall within 14 days of planting, fer-
tilizer, and harvest), and ci denotes group i’s
soil characteristics (field slope, percent organic
matter, soil horizon depth, and the erodibil-
ity factor “K”). The New York soils data used
to estimate this model and its translog speci-
fication are described in Boisvert, Regmi, and
Schmit.

Policy targets for fertilizer were computed
using chance constraints (Lichtenberg and
Zilberman). Probability distributions of emis-
sions from each soil were simulated from an-
nual weather observations in Ithaca from 1963
to 1992. Values of b∗

i were then found by itera-

tively reducing fertilizer until nitrate emissions
exceeded e∗ = 25 pounds/acre with a probabil-
ity of no more than � = 0.1. This procedure led
to estimated targets of b∗

1 = 55 and b∗
2 = 82.

Policy Simulations

Policies were simulated under several scenar-
ios to study the effects of hidden information.
All simulations were conducted using the five-
step procedure outlined above, which could be
simplified to involve only mean and lower-tail
profits because the sufficient condition for sim-
ply related random variables was satisfied (Re-
sult 1).12 Table 1 reports the fertilizer levels,
profits, and production for each of the policies;
payments are in table 2. The policy scenarios
vary along the three dimensions in the govern-
ment’s information set.

The first dimension is information on fertil-
izer use. In the output monitoring scenarios,

12 Because the estimated yield functions yi(x, b) are linear in x,
the quantity �� = �i

x (x, b, t) − �i
x (x, b′, t′) is a constant (either

positive or negative) for all (b, t) and (b′, t′).
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Table 2. Mean Optimal Payments and Information Premiums

Risk Aversion (SSD) Risk Neutrality

Output Input Output Input
Item Monitoring Monitoring Monitoring Monitoring

Assigned Policies by Soil
Output payment, group 1 ($/ton) −9.86 0.00 −8.49 0.00
Acreage payment, group 1 ($/acre) 230.81 6.33 199.24 3.60
Expected net payment, group 1 ($/acre) 3.61–6.53 6.33 3.61 3.60
Output payment, group 2 ($/ton) −10.68 0.00 −9.54 0.00
Acreage payment, group 2 ($/acre) 251.06 11.62 223.43 7.29
Expected net payment, group 2 ($/acre) 9.13–13.69 11.62 7.30 7.29

Uniform Policy
Output payment ($/ton) −10.68 0.00 −9.54 0.00
Acreage payment ($/acre) 251.06 25.24 223.43 18.63
Expected net payment, group 1 ($/acre) 7.29–10.77 25.24 5.66 18.63
Soils information rent, group 1 ($/acre) 3.68–4.24 18.91 2.05 15.03
Expected net payment, group 2 ($/acre) 9.13–13.69 25.24 7.30 18.63
Soils information rent, group 2 ($/acre) 0.00 13.62 0.00 11.34

fertilizer use cannot be observed and farmers
receive payments of the form si − tiyi. In the in-
put monitoring scenarios, the government can
observe fertilizer use so that the acreage pay-
ments si could be conditioned directly on meet-
ing the fertilizer targets b∗

i ; the marginal out-
put payments ti were set to zero in these cases
(table 2). The effects of information on fertil-
izer use are well illustrated by the SSD-based
policies that are assigned by soil (the upper-left
block of numbers). If fertilizer use were unob-
servable (but output could be monitored), the
expected net payments per acre, E[si − tiyi],
were in the range of about $4–$7 for group 1
and $9–$14 for group 2 (table 2).13 If fertilizer
could be observed, then the groups would re-
ceive acreage payments of about $6 and $12 per
acre, respectively. Based on these results, infor-
mation on input use does not appear to have a
large impact on government costs.

The second dimension is soils information.
One set of scenarios here is assigned poli-
cies by soil type, which requires the use of
soils information by farm. In these cases, the
self-selection constraints were ignored and
acreage payments si were set at the participa-
tion bounds (Pi). The other possibilities, where
soils information is not used, are self-selected
policies or a uniform policy for all soils. The
estimated yield relationships imply that self-
selecting policies do not exist, so that the gov-
ernment’s only alternative to assigned policies

13 The expected values assume a range of values under SSD
because they correspond to a range of optimal fertilizer levels
(table 2).

is a uniform policy.14 The uniform policies were
computed by first setting the marginal output
payment (or fertilizer levels for input monitor-
ing) at the more stringent of the two individual
policies, to ensure that environmental targets
were met for both groups. The acreage pay-
ments were then adjusted to ensure that both
groups would be willing to participate.

The value of soils information can be re-
vealed by comparing a uniform and assigned
policies. Consider first this comparison for the
SSD scenarios with output monitoring (the
first column of numbers in table 2). If the gov-
ernment obtained enough soils information to
assign policies, then payments to group 2 would
not be affected (they would receive about $9–
$14 in either case), but the payment to group 1
could be reduced from about $7–$10 to $4–$7.
This cost savings is the value of soils informa-
tion to the government, and reflects an “in-
formation rent” of about $4 earned by group
1 in a uniform policy. In the input monitor-
ing case (the second column of numbers), the
implied value of information would be even
larger because both groups would earn infor-
mation rents, of about $19 and $14 per acre,
respectively.15

14 The self-selection bounds were I1 = −11.35 and I2 = 18.59,
which violate the necessary condition for self-selection because
I1 > −I2. The underlying difficulty is the similarity in marginal
products of fertilizer across groups. Sensitivity results with a wider
gap in marginal productivities are presented below for comparison.

15 If fertilizer is monitored, the uniform policy would have to
require b∗ =55 pounds per acre to meet both environmental targets
(table 1). An acreage payment of $25.24 is then needed to ensure
both groups would be willing to participate in the program. This
payment exceeds the assigned payments by about $19 and $14 for
groups 1 and 2, respectively (table 2).
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Third, scenarios differ by information on
risk attitudes. Here, one group of scenarios as-
sumes that the government knows only that
farmers are risk averse to varying degrees, so
that policies must be computed based on SSD.
The other scenarios assume that all farmers
have identical preferences and are risk neu-
tral. In the risk-neutral cases, policies were
computed by considering only mean profits in
each step. The value of risk information can be
found by comparing the SSD and risk-neutral
results. If the government initially believed
farmers are risk averse to unknown degrees
(the SSD case), and then learned that all farm-
ers are risk neutral, this information would be
valuable because payments could be reduced
by up to $7 per acre (table 2). More plausibly,
the government would improve its informa-
tion on risk attitudes by learning that risk aver-
sion coefficients have some upper bound r̄ .
Peterson and Boisvert (2001b) calculated pay-
ments under input monitoring using stochas-
tic dominance with respect to a function, with
r̄ = 0.03.16 Payments for this bounded case
were up to $5 smaller than those under SSD.

The results also illustrate the consequences
of incorrect assumptions on risk attitudes. The
difference between SSD and risk-neutral pay-
ments represents a risk premium that accounts
for up to about 47% of SSD payments. If the
government incorrectly assumed that all farm-
ers were risk neutral, then payments would be
too small for risk-averse farmers to be willing
to participate.17 In the bounded model stud-
ied by Peterson and Boisvert (2001b), the es-
timated risk premium was somewhat smaller
(up to about $3 or 37% of payments under
bounded risk aversion). Nevertheless, nonpar-
ticipation in the program was a dominant strat-
egy for risk-averse farmers if payments were
computed under risk neutrality.

Sensitivity Analysis

As mentioned above, self-selecting policies
were not possible because the estimated

16 This value was chosen as a plausible upper bound based on
published estimates of risk coefficients. Such estimates must be
properly calibrated because they are not invariant to the level of
income (Grube). The bound of 0.03 reflects empirical evidence on
risk coefficients when the amount of income at stake is in the range
of $100–$1,000 (Grube, Tauer).

17 For our model specification, the risk-neutral results are equiv-
alent to those from assuming no uncertainty. As a reviewer points
out, the quadratic production function implies that the effect of
rainfall on the marginal product of fertilizer is constant, so that
max{E�i(x, b, t)} is equivalent to max{�i(Ex, b, t)}. Thus, in this
case, ignoring risk has the same consequences as ignoring risk aver-
sion; both lead to violations of incentive compatibility.

marginal products were quite similar across
groups. At the data means, the difference in es-
timated marginal products of nitrogen is 0.015
tons (30 pounds), which translates to less than
0.1% of mean yield. The estimated differen-
tial may have been muted because of the spe-
cific soils used in the field trials; previous agro-
nomic evidence suggests that light and heavy
soils in New York respond to nitrogen quite
differently (Peterson and Boisvert, 2001a).

To explore the effect of a larger produc-
tivity differential, a sensitivity analysis was
performed on the coefficient for d2b2 in the
yield equation, which had a point estimate of
0.000057. Table 3 presents the results for a co-
efficient value of 0.0001, which raises the dif-
ference in marginal products at mean nitrogen
to 0.026 tons (52 pounds). In this case, self-
selected policies are possible and are shown in
the bottom half of the table. The most signifi-
cant difference between these and the base re-
sults for a uniform policy (table 2) is that output
monitoring is substantially more costly than in-
put monitoring. The expected net payments
under output monitoring are in the range of
$30 and $21 for the two groups, respectively,
which are three to four times the payments un-
der input monitoring (table 3). This suggests
that the least-cost monitoring scheme is sensi-
tive to technical parameters and must be eval-
uated empirically.

Policy Implications

This article demonstrates both the theoret-
ical and empirical possibility of successfully
designing a voluntary environmental program
when the government’s information is limited.
In particular, we identified the structure of
policies necessary to ensure incentive compat-
ibility when both risk attitudes and technology
are unknown. We outlined a computational
procedure for finding policies that accommo-
dates unknown risk attitudes through stochas-
tic efficiency criteria. We also derived an
empirically verifiable necessary condition for
self-selection to be possible, and showed that
in certain cases the stochastic efficiency com-
parisons can be simplified to involve a small
number of computations involving lower-tail
and mean income.

The model was simulated for a program
that would offer government payments to New
York corn producers in exchange for fertilizer
reductions. The results suggest that monitor-
ing corn yields could be substituted for the
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Table 3. Mean Optimal Payments and Information Premiums, Self-selecting Policies

Risk Aversion (SSD) Risk Neutrality

Output Input Output Input
Item Monitoring Monitoring Monitoring Monitoring

Assigned Policies by Soil
Output payment, group 1 ($/ton) −9.86 0.00 −8.49 0.00
Acreage payment, group 1 ($/acre) 230.81 6.33 199.24 3.60
Expected net payment, group 1 ($/acre) 3.61–6.53 6.33 3.61 3.60
Output payment, group 2 ($/ton) −9.00 0.00 −8.08 0.00
Acreage payment, group 2 ($/acre) 237.01 5.15 213.31 5.15
Expected net payment, group 2 ($/acre) 20.82–22.01 5.15 19.25 5.15

Self-Selected Policies
Output payment, group 1 ($/ton) −9.86 0.00 −8.49 0.00
Acreage payment, group 1 ($/acre) 256.85 11.48 222.77 8.75
Expected net payment, group 1 ($/acre) 29.65–32.58 11.48 27.14 8.75
Soils information rent, group 1 ($/acre) 26.04 5.15 23.53 0.00
Output payment, group 2 ($/ton) −9.00 0.00 −8.08 0.00
Acreage payment, group 2 ($/acre) 237.01 5.15 213.31 5.15
Expected net payment, group 2 ($/acre) 20.82–22.01 5.15 19.25 5.15
Soils information rent, group 2 ($/acre) 0.00 0.00 0.00 0.00

potentially costly and intrusive monitoring of
fertilizer use. Although the results differ with
technical parameters, expected net payments
were frequently lower when they were tied to
crop yields instead of fertilizer levels. Overall,
average net payments were below $15 per acre,
which are smaller than typical farm program
payments received by New York producers in
the past. Self-selection would be possible in
cases where the marginal productivity of ni-
trogen differs substantially across soils.

Simulated payments could be reduced if the
government assigned policies to specific soils,
and in this sense information on the distribu-
tion of soils across farms is valuable to the gov-
ernment. This type of information already ex-
ists in many states. In New York, for example,
the use-value assessment program requires lo-
cal officials to record each farm’s acreage in
each of ten soil productivity groups. Policy
makers would need to weigh these cost savings
against the political and other consequences of
conditioning policy eligibility and benefits on
a farmer’s resource setting.

Policies were also simulated for both the
risk-averse and risk-neutral cases. Pannell,
Malcom, and Kingwell have argued that the in-
sight gained by modeling risk aversion is more
pronounced for discrete decisions (such as the
adoption of new technology) than for continu-
ous decisions regarding input use, since in the
latter case the results are often very similar to
a risk-neutral model. In the New York applica-
tion of our policy model, the risk-neutral and

risk-averse results for optimal inputs and prof-
its are indeed similar, with expected incomes
that often differ by less than $1 per acre. How-
ever, with respect to the program participa-
tion decision, the incentive-compatibility con-
straints magnify the effect of risk aversion. If
payments were designed assuming risk neu-
trality, environmental objectives could well be
sacrificed because risk-averse farmers would
have insufficient incentives to participate in the
program voluntarily.

[Received August 2001;
accepted May 2003.]
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Appendix

Proof of Result 1

Suppose that �m = ∂ Fi (m̂)
∂m − ∂ F ′

i (m̂)
∂m′ is negative (pos-

itive) for all m̂; that is, Fi is everywhere flatter
(steeper) than F ′

i . This implies that if the distribu-
tions cross, Fi intersects F ′

i from above (below). We
will prove that �m < (>) 0 if and only if �� > (<) 0.
Let Fx be the cdf of x (i.e., Fx(a) ≡ Pr{x ≤ a}), and
define X(m) and X ′(m′) as the inverse functions of
m and m′ respectively, such that X(�i(x, b, t) + s) =
x and X ′(�i(x, b′, t′) + s′) = x. Applying X(·) and
X ′(·) to both sides of the inequalities inside Fi and
F ′

i , based on the definition in (5):

Fi(m) = Pr{x ≤ X(m)} = Fx(X(m)) and

F ′
i (m′) = Pr{x ≤ X(m′)} = Fx(X ′(m′)).

At an intersection point m̂:

Fi (m̂) = F ′
i (m̂) ⇒ Fx (X(m̂)) = Fx (X ′(m̂))

⇒ X(m̂) = X ′(m̂)
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Letting X̂ represent the value of X(m̂) = X ′(m̂), �m

can be written in terms of Fx as follows:

�m = ∂ Fx (X̂)
∂ X

∂ X

∂m
− ∂ Fx (X̂)

∂ X

∂ X ′

∂m ′

= ∂ Fx (X̂)
∂ X

[
∂ X

∂m
− ∂ X ′

∂m ′

]
.

(A.1)

By the inverse function theorem, ∂X/∂m = 1/�i
x(x,

b, t) and ∂X ′/∂m′ = 1/�i
x(x, b′, t′). Substituting these

relationships into (A.1) and noting that ∂Fx/∂X >
0 by the definition of a cdf, �m < (>) 0 is equivalent
to: 1/�i

x(x, b, t) < (>) = 1/�i
x(x, b′, t′). Rearranging,

�i
x(x, b, t) >(<) �i

x(x, b′, t′), which is the desired
result. �

Proof of Result 2

SSD requires that S(m̃) = ∫ m̃
−∞[Fi (m) − F ′

i (m)] dm ≤
0 for all m̃, with strict inequality for some m̃. We
prove this condition holds if Fi and F ′

i are simply
related and hypotheses (i) and (ii) are met. There
are three cases to consider:

Case 1. Fi and F′
i do not intersect. Under hypothe-

ses (i) and (ii) of Result 2, Fi must lie strictly
to the right of F ′

i in this case. Thus, Fi(m) <
F ′

i (m) for all m, and S(m̃) < 0 for all m̃.
Case 2. Fi and F′

i intersect at their lower tails. Here
m
¯

= m
¯

′; since the distributions cannot cross a
second time, Fi must lie either strictly to the
right or left of F ′

i for m > m
¯

. Hypothesis (ii)
precludes the second possibility, which implies
that Fi(m) < F ′

i (m) for all m > m
¯

. Thus, S(m̃) =
0 for all m̃ ≤ m

¯
= m

¯
′ and S(m̃) < 0 for all

m̃ > m
¯

.
Case 3. Fi and F′

i intersect above their lower tails.
In this case Fi (m̂) = F ′

i (m̂) for some m̂ > m
¯

,
m
¯

′. Since m̂ can be the only intersection point,
hypothesis (i) implies that m

¯
> m

¯
′. Thus, Fi

must lie strictly to the right of F ′
i up to m̂

(i.e., Fi(m) < F ′
i (m) ∀m < m̂), so that S(m̃) <

0 for all m̃ ≤ m̂. For m̃ > m̂, S(m̃) = S(m̂) +∫ m̃
m̂ [Fi (m) − F ′

i (m)] dm. The second compo-
nent is positive and monotonically increasing
in m̃ since Fi lies to the left of F ′

i after the in-
tersection point (i.e., Fi(m) > Fi

′(m) for m >
m̂). However, hypothesis (ii) guarantees that
it never becomes large enough to exceed S(m̂)
in absolute value. To see this, note that Em ≥
Em′ means that

∫ ∞
−∞ m[d Fi − d F ′

i ] ≥ 0, or,
integrating by parts, m[Fi (m) − F ′

i (m)]|∞−∞ −∫ ∞
−∞ [Fi (m) − F ′

i (m)] dm ≥ 0. Since Fi(m
¯

) =
Fi

′(m
¯

) = 0 and Fi (m̄) = F ′
i (m̄) = 1, the first

term in brackets equals zero. Therefore,
limm̃→∞ S(m̃) ≤ 0. �

Proof of Result 3

We will show that a b below or above both b
¯

(t)
and b̄(t) is dominated by some input level but a b
between b

¯
(t) and b̄(t) is not. We do not know a priori

whether b
¯

(t) is larger or smaller than b̄(t). Suppose
first that b

¯
(t) < b̄(t). To begin, note that strict con-

cavity of �i( x
¯

, b, t) and E�i(x, b, t) in b implies that:
(a) �i( x

¯
, b, t) is strictly increasing (decreasing) for

all b< (>) b
¯

(t), and (b) E�i (x, b, t) is strictly increas-
ing (decreasing) for all b<(>)b̄(t). Thus, for any
b < b

¯
(t):

�i( x
¯

, b, t) < �i( x
¯

, b(t), t) and

E�i(x, b, t) < E�i(x, b
¯

(t), t)

where the inequalities follow from the definition of
b
¯

(t) and fact (b), respectively. Therefore, by Re-
sult 1, b

¯
(t) dominates b by SSD. Similarly, for any

b > b̄(t):

�i ( x
¯
, b, t) < �i ( x

¯
, b̄(t), t) and

E�i (x, b, t) < E�i (x, b̄(t), t)

by fact (a) and the definition of b̄(t), implying that
b̄(t) dominates b by SSD. Finally, consider any two
input levels b, b′ such that b

¯
(t) ≤ b < b′ ≤ b̄(t). Nei-

ther of these input levels can dominate the other
because:

�i ( x
¯
, b, t) < �i ( x

¯
, b′, t) and

E�i (x, b, t) > E�i (x, b′, t).

That is, one of the necessary conditions for either
b or b′ to dominate is violated. A parallel set of ar-
guments verifies that if b

¯
(t) > b̄(t) then: b̄(t) domi-

nates all b < b̄(t); b
¯

(t) dominates all b > b
¯

(t); and for
any b < b′ in the interval [b̄(t), b

¯
(t)], neither input

level dominates the other. �

Proof of Result 4

By Result 3, B(t) is the closed interval of real num-
bers bounded by b

¯
(t) and b̄(t). To begin, we must

establish that ∀b ∈ B(t), �i( x
¯

, b, t) is bounded
between �i( x

¯
, b

¯
(t), t) and �i( x

¯
, b̄(t), t), and that

E�i(x, b, t) is bounded between E�i(x, b
¯

(t), t)
and E�i (x, b̄(t), t). By the definition of a max-
imum �i( x

¯
, b, t) ≤ �i( x

¯
, b

¯
(t), t) for all b ∈

B(t). Since B(t) is a closed and bounded inter-
val, any b ∈ B(t) can be written b = �b

¯
(t) + (1 −

�)b̄(t) for some � ∈ [0, 1]. By the concavity of
�i( x

¯
, b, t) in b, �i ( x

¯
, b, t) ≥ ��i ( x

¯
, b

¯
(t), t) + (1 −

�)�i ( x
¯
, b̄(t), t) ≥ �i ( x

¯
, b̄(t), t). A parallel set of ar-

guments verifies that E�i(x, b
¯

(t), t) ≤ E�i(x, b, t) ≤
E�i(x, b̄(t), t) for all b ∈ B(t).

Now suppose group i faces the policy alternatives
(t, s) and (t′, s′) and that all of the following condi-
tions are met:
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�i ( x
¯
, b

¯
(t), t) + s ≥ �i ( x

¯
, b

¯
(t ′), t ′) + s ′,

E�i (x, b
¯

(t), t) + s ≥ �i ( x
¯
, b

¯
(t ′), t ′) + s ′

(A.2)

�i ( x
¯
, b

¯
(t), t) + s ≥ �i ( x

¯
, b̄(t ′), t ′) + s ′,

E�i (x, b
¯

(t), t) + s ≥ E�i (x, b̄(t ′), t ′) + s ′

(A.3)

�i ( x
¯
, b̄(t), t) + s ≥ �i ( x

¯
, b

¯
(t ′), t ′) + s ′,

E�i (x, b̄(t), t) + s ≥ E�i (x, b
¯

(t ′), t ′) + s ′
(A.4)

�i ( x
¯
, b̄(t), t) + s ≥ �i ( x

¯
, b̄(t ′), t ′) + s ′,

E�i (x, b̄(t), t) + s ≥ E�i (x, b̄(t ′), t ′) + s ′.

(A.5)

Conditions (A.2), (A.3), and the bounds on
�i( x

¯
, b′, t′) and E�i(x, b′, t′) established above

imply:

�i ( x
¯
, b

¯
(t), t) + s ≥ �i ( x

¯
, b′, t ′) + s ′,

E�i (x, b
¯

(t), t) + s ≥ E�i (x, b′, t ′) + s ′

∀b′ ∈ B(t ′).

(A.6)

Similarly, (A.4), (A.5), and the bounds on profits
imply:

�i ( x
¯
, b̄(t), t) + s ≥ �i ( x

¯
, b′, t ′) + s ′,

E�i (x, b̄(t), t) + s ≥ E�i (x, b′, t ′) + s ′

∀b′ ∈ B(t ′).

(A.7)

Finally, (A.6), (A.7), and the bounds on �i( x
¯

, b, t)
and E�i(x, b, t) imply that

�i ( x
¯
, b, t) + s ≥ �i ( x

¯
, b′, t ′) + s ′,

E�i (x, b, t) + s ≥ E�i (x, b′, t ′) + s ′

∀b ∈ B(t), ∀b′ ∈ B(t ′).

(A.8)

By Result 2, (A.8) is sufficient to guarantee that

Fi (m; b, t, s) � Fi (m; b′, t ′, s ′)

∀b ∈ B(t), ∀b′ ∈ B(t ′).

(A.9)

An equivalent way of expressing the conditions in
(A.2)–(A.5) is that

s − s ′ ≥ max




�i ( x
¯
, b

¯
(t ′), t ′) − �i ( x

¯
, b

¯
(t), t) E�i (x, b

¯
(t ′), t ′) − E�i (x, b

¯
(t), t)

�i ( x
¯
, b̄(t ′), t ′) − �i ( x

¯
, b

¯
(t), t) E�i (x, b̄(t ′), t ′) − E�i (x, b

¯
(t), t)

�i ( x
¯
, b

¯
(t ′), t ′) − �i ( x

¯
, b̄(t), t) E�i (x, b

¯
(t ′), t ′) − E�i (x, b̄(t), t)

�i ( x
¯
, b̄(t ′), t ′) − �i ( x

¯
, b̄(t), t) E�i (x, b̄(t ′), t ′) − E�i (x, b̄(t), t)


 .(A.10)

That is, (A.10) implies (A.9), which is the desired
result. �


