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CHAPTER XV: APPLIED INTEGER PROGRAMMING

L P assumes continuity of the solution region. LP decision variables can equa whole numbers or any
other real number (3 or 4 aswell as 3.49876). However, fractiona solutions are not always acceptable.
Particular items may only make sense when purchased in whole units (e.g., tractors, or airplanes). Integer
programming (IP) requires a subset of the decision variablesto take on integer values (i.e,, 0, 1, 2, etc.). IP
also permits modeling of fixed costs, logical conditions, discrete levels of resources and nonlinear functions.

IP problems usually involve optimization of alinear objective function subject to linear congtraints,
nonnegativity conditions and integer value conditions. Theinteger valued variablesarecaled  integer
variables. Problems containing integer variablesfal into severa classes. A probleminwhich al variables
areinteger isa pureinteger |P problem. A problem with someinteger and some continuous variables, isa
mixed-integer |P problem. A problem in which the integer variables are restricted to equa either zero or one
iscaled a zero-one |IP problem. Thereare pure zero-one | P problems where all variables are zero-one and
mixed zero-one |P problems containing both zero-one and continuous variables. The most generd

formulation of the IP problemis:

Max CW + CX + CY

st. AW + AX + AY < b
w > 0
X > 0 and integer
Y =0orl

where the W's represent continuous variables; the X'sinteger variables, and the Y's zero-one variables.
Our coverage of integer programming is divided into two chapters. This chapter covers basic integer
programming problem formulation techniques, and afew characteristics relative to the solution and

interpretation of integer programming problems. The next chapter goesinto a set of example problems.
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15.1 Why Integer Programming
The most fundamental question regarding the use of integer programming (IP) iswhy useit.
Obvioudly, IP allows one to depict discontinuous decision variables, such as those representing acquisition of
indivisible items such as machines, hired labor or animals. In addition, IP aso permits modding of fixed
costs, logical conditions, and discrete levels of resources aswill be discussed here.
15.1.1 Fixed Cost
Production processes often involve fixed costs. For example, when manufacturing multiple products,
fixed costs may arise when shifting production between products (i.e., milk plant operators must incur
cleaning costs when switching from chocolate to white milk). Fixed costs can be modeled using the following
mixed integer formulation strategy:
Let: X denote the continuous number of units of agood produced;
Y denote azero-one variable indicating whether or not fixed costs are incurred;
C denote the per unit revenue from producing X;
F denotethefixed cost incurred when producing a nonzero quantity of regardless of how
many units are produced; and
M denote alarge number.

The formulation below depicts this problem:
Max CX - FY

st. X - MY < O
X > 0
Y = 0or1l

Here, when X =0, the congtraint relating X and Y alowsY tobeOor 1. Given F > 0 then the objective
function would cause Y to equd 0. However, when0< X < M, thenY must equa 1. Thus, any non-zero

production level for X causesthe fixed cost (F) to beincurred. The parameter M is an upper bound on the
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production of X (acapacity limit).

The fixed cost of equipment investment may be modeled similarly. Suppose oneis modeling the
possible acquisition of severa different-sized machines, al capable of doing the sametask. Further, suppose
that per unit profits are independent of the machine used, that production is disaggregated by month, and that

each machine's monthly capacity isknown. This machinery acquisition and usage decision problem can be

formulated as:
Max > C X - X FY,
m k
st. X, - XCap,Y, < 0 for dl m
k
Xn > 0 Y, =0o0r1 for dl k and m,

where m denotes month, k denotes machine, C |, isthe profit obtained from production in month m; X isthe
quantity produced in month m; F , isthe annualized fixed cost of thek ™ machine; Y , isazero-one variable
indicating whether or not thek ™ machine is purchased; and Cap ,,, is the capacity of thek " machineinthem™
month.

The overall formulation maximizes annual operating profits minus fixed costs subject to congtraints
that permit production only when machinery has been purchased. Purchase of several machinery itemswith
different capacity characterigicsisalowed. Thisformulation permits X, to be non-zero only when at least
oneY , ishon-zero. Again, machinery must be purchased with the fixed cost incurred beforeit isused. Once
purchased any machine alows production up to its capacity in each of the 12 months. Thisformulation
illustrates alink between production and machinery purchase (equivalently purchase and use of a piece of
capital equipment) through the capacity constraint. One must be careful to properly specify the fixed costs so
that they represent the portion of cost incurred during the time-frame of the moddl.

15.1.2 L ogical Conditions

IP aso alows oneto depict logica conditions. Some examples are:
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a) Conditional Use - A warehouse can be used only if constructed.

b) Complementary Products - If any of product A is produced, then a minimum quantity of
product B must be produced.

C) Complementary Investment - If aparticular class of equipment is purchased then only
complementary equipment can be acquired.

d) Sequencing - Operation A must be entirely complete before operation B sarts.

All of these conditions can be imposed using azero-one indicator variable. Anindicator variable

tellswhether a sum is zero or nonzero. Theindicator variable takes on avalue of oneif the sum isnonzero
and zero otherwise. Anindicator variable isimposed using acongraint like the following;:

Z X, - MY <0

[

where M isalarge positive number, X , depicts agroup of continuous variables, and Y isan indicator variable
restricted to be either zero or one. Theindicator varigble Y indicates whether or not any of the X'sare
non-zero with Y=1if so, zero otherwise. Note thisformulation requires that M must be as large as any
reasonable value for the sum of the X's.

Indicator variables may be used in many ways. For example, consider a problem involving two

mutually exclusive products, X and Z. Such a problem may be formulated using the congtraints

X - MY, < 0

Z - MY, <0

Y, + Y, <1

X, Z > 0
Y Y, = 0Oor1l

Here, Y , indicates whether or not X is produced, while'Y , indicates whether or not Z is produced. Thethird
condraint, Y ; +Y, < 1, in conjunction with the zero-oneregtrictionon Y ; and'Y ,, imposes mutual

exclugvity. Thus, whenY ; = 1then X can be produced but Z cannot. Similarly, whenY , = 1then X must be
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zerowhile0 < Z < M. Consequently, either X or Z can be produced, but not both.

15.1.2.1 Either-or-Active Condgtraints

Many types of logical conditions may be modeled using indicator variables and mutual exclusivity.

Suppose only one of two congtraintsisto be active, i.e.,

N
o

ether A X <
o AX <

N
(o

Formulation of this situation may be accomplished utilizing the indicator variable Y asfollows

AX - MY < b
AX - M(@1-Y) < b,
X > 0,Y =001
Thisisrewritten as
AX - MY < b,
AX + MY < b2 + M
X >0 Y =001

Here M isalarge positive number and the value of Y indicates which congtraint isactive. WhenY = 1the
second constraint is active while the first congtraint is removing it from active consideration. Conversdly,
when'Y = 0thefirst constraint is active.

15.1.2.2 An Aside: Mutua Exclusivity

The above formulation contains acommon trick for imposing mutual exclusivity. Theformulation

could have been written as;

AX - MY, < b
AX - MY, < b,
Y, + Y, = 1

X >0, Y, Y, = Oor 1.

However, one can solvefor Y , in thethird condtraint yieldingY , =1-Y . Inturn, subgtituting in the first
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two equations gives

A X -MY, <b

A X - M(1-Y,) < b,
which isthe compact formulation above. However, Williams (1978b) indicates that the more extensive
formulation will solve faster.

15.1.2.3 Multiple Active Condtraints

The formulation restricting the number of active constraints may be generalized to logical
conditionswhere P out of K congtraints are active (P < K). Thisis represented by

AX - MY, < b

AX - MY, < b

1

2

AX - MY, < b,
XY, = K-P
i
X >0Y = 0Oor1 fordli

Here, Y, identifies whether congtraint i isactive(Y ;=0) or not (Y, = 1). Thelast congtraint requires exactly
K - Pof theK constraints to be non-active, thus P constraints are active.

15.1.2.4 Conditional Restrictions

Logical conditions and indicator variables are useful inimposing conditional restrictions. For
example, nonzero values in one group of variables (X) might imply nonzeros for another group of variables

(Y). Thismay beformulated as

TX, - MZ <0
i
XY, - RZ >0
k
X, Y, >0 Z =0or1l

Here X, are the dements of thefirgt group; Z isan indicator variable indicating whether any X, has been
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purchased; Y , are the dements of the second group; and M isalarge number. Z can be zero only if dl the X's
are 0 and must be one otherwise. The sum of the Y's must be greater than R if the indicator variable Z is one.
15.1.3 Discrete L evels of Resources

Situations may arise where variables are constrained by discrete resource conditions. For example,
suppose afarm hasthree fields. Farmers usualy plant each field to asingle crop. Thus, asituation might
require crops to be grown in acreages consistent with entire fields being planted to asingle crop. This
restriction can be imposed using indicator variables. Assumethat thereare 3fieldsof szesF |, F,, and F,

each of which must betotally alocated to either crop 1 (X ;) or crop 2 (X ,). Constraintsimposing such a

condiition are
X, - FY, - FY, - FY, =0
X, - F@a-Y) - F@a-Y) - Fy(1-Y)) =0
or
X, + FY, -+ FY, -+ FY, = F +F +F
X, > 0, Y, = 0ol for dl k and i

Thevariable Y ; indicates whether fidd i isplantedto crop 1 (Y =1) or crop 2 (Y =0). The X, variables equal
the totd acreage of cropi whichisplanted. For example, whenY =l1and ,, Y ; =0, then the acreage of crop
1 (X,) will equa F; whilethe acreage of crop 2 (X ,) will equa F, + F,. The discrete variables insure that the
fields are assigned in a mutually exclusive fashion.
15.1.4 Digtinct Variable Values

Situations may require that decision variables exhibit only certain distinct values (i.e., avariable
restricted to equal 2, 4, or 12). Thiscan beformulated intwo ways. First, if the variable can take on
distinct values which exhibit no particular pattern then:

X - V)Y, - V)Y, - V)Y, =0
Y, + Y, + Y, =1

1 2 3
X >0 Y Oor1l.

Here, the varigble X can take on either the discretevdueof V|, V,, or V,;, where VV; may be any real number.
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The second constraint imposes mutual exclusivity between the allowable values.

On the other hand, if the values fal between two limits and are separated by a constant interval, then
adifferent formulation is applicable. The formulation to be used depends on whether zero-one or integer
variables are used. When using zero-one variables, abinary expansion isemployed. If, for example, X were
restricted to be an integer between 5 and 20 the formulation would be:

X - Y, - 2Y, - 4Y, -8, =5

X > 0, Y, =0o1

Hereeach Y ; isazero-oneindicator variable, and X isa continuous variable, but in the solution, X will equal
an integer vdue. When dl the Y'sequd zero, then X =5. If Y , and Y , both equal 1 then X = 15. Through
this representation, any integer value of X between 5 and 20 can occur. In general through the use of N zero-
one variables, any integer value between the right hand side and the right hand sideplus2  N-1 can be

represented. Thus, the constraint

N
X - X2, = a
k=1

restricts X to be any integer number between aand a+2 N-1. Thisformulation permits one to model genera
integer values when using a zero-one | P algorithm.
15.1.5 Nonlinear Representations
Another usage of |P involves representation of the multiplication of zero-one variables. A term
involving the product of two zero-one variables would equal one when both integer variables equal one and
zero otherwise.  Suppose Z equds the product of two zero-one varigbles X | and X,
Z = XX,

We may replace thisterm by introducing Z as a zero-one variable asfollows:
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1
2Z - X, - X, <0
=0orl

|

N

+

X
=

+

X
N

IA

X
[

Thefirst constraint requires that Z+1 be greater than or equal to X | + X,. Thus, Z isforced to equa 1 if both
X, and X, equa one. The second constraint requires 2Z to be lessthan or equal to X | + X,. This permitsZ to
be nonzero only when both X ;| and X, equal one. Thus, Z will equa zero if either of the variables equal zero
and will equa onewhen both X ; and X, are one. One may not need both congtraints, for example, when Z
appears with positive returnsin a profit maximizing objective function the first constraint could be dropped,
although as discussed later it can be important to kegp many constraints when doing applied IP.
15.1.6 Approximation of Nonlinear Functions

IPisuseful for approximating nonlinear functions, which cannot be approximated with linear
programming i.e., functions with increasing marginal revenue or decreasing marginal cost. (LP step
approximations cannot adequately approximate this; the resultant objective function is not concave.) One can
formulate an | P to require the approximating points to be adjacent making the formulation work

appropriately. If one hasfour step variables, an adjacency restriction can be imposed as follows:

A+ Ay + Ay + Ay =1
Ay - Z <0
Ay - Z, <0
Ay - Z, <0
Ay -Z <0
vt L v 4y v 2, <2
1 A <1
1 +Z, <1
Z, + Z, <1

A >0 Z =0orl

The lambdas () are the approximation step variables; the Z 'sareindicator variablesindicating whether a
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particular step variable is non-zero. Thefirst congtraint containing Z  , through Z , dlows no more than two
nonzero step variables. The next three constraints prohibit non-adjacent nonzero  A's.
Thereis aso asecond type of nonlinear approximation using zero-one variables. Thiswill be

demonstrated in the next chapter on economies of scale.

15.2 Feasible Region Characteristics and Solution Difficulties

IP problems? are notorioudly difficult to solve. This section suppliesinsight asto why thisis so.
Nominaly, IP problems seem easier to solve than LP problems. LP problems potentialy have an infinite
number of solutions which may occur anywhere in the feasible region either interior, along the constraints, or
at the constraint intersections. However, it has been shown that L P problems have solutions only at
constraint intersections (Dantzig, 1963). Thus, one has to examine only the intersections, and the one with
the highest objective function value will be the optimum LP solution. Further, in an LP given any two
feasible points, al pointsin between will be feasible. Thus, onceinside the feasible region one need not
worry about finding infeasible solutions. Additionaly, the reduced cost criterion provides adecision rule
which guarantees that the objective function will increase when moving from one feasible point to another (or
at least not decrease). These properties greatly aid solution.

However, IPisdifferent. Thisisbest shown through an example. Suppose that we define a pure IP

problem with nonnegative integer variables and the following constraints.

2X + 3Y < 16
33X + 2Y 16.

IA

A graph of thissituation is given by Figure 15.1. The diamonds in the graph represent the integer points,
which are the potential integer solutions. Obvioudy the feasible integer solution pointsfall below or on the

constraints while simultaneously being above or onthe X and Y axes. For this example the optimal solution

Y We will reference pure IPin this section.
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is probably not on the constraint boundaries (i.e. X=Y may be optimal), much less at the congtraint
intersections. Thisintroduces the principal difficulty in solving IP problems. Thereis no particular location
for the potentia solutions. Thus, while the equivalent LP problem would have four possible solutions (each
feasible extreme point and the origin), the I P problem has an unknown number of possible solutions. No
general statement can be made about the location of the solutions.
A second difficulty isthat, given any two feasible solutions, al the points in between are not feasible
(i.e, given[3 3] and[2 4], all pointsin between are non-integer). Thus, one cannot move fredy within the IP
areamaintaining problem feasibility, rather one must discover the | P points and move totally between them.
Thirdly, itisdifficult to move between feasible points. Thisisbest illustrated by adightly
different example. Suppose we have the constraints

Ny T (DAY
1 2

X. + 10X.

N\

A PN N

54

IA

where X ; and X, are nonnegative integer variables. A graph of the solution space appearsin Figure 15.2.
Note here the interrelationship of the feasible solutions do not exhibit any set patterns. In thefirst graph one
could move between the extreme feasible solutions by moving over one and down one. In Figure 15.2,
different patterns are involved. A situation which greatly hampers IP algorithmsisthat it is difficult to
maintain feasibility while searching for optimality. Further, in Figure 15.2, rounding the continuous solution
at say (4.6, 8.3) leadsto an infeasible integer solution (at 5, 8).

Another cause of solution difficulties is the discontinuous feasible region. Optimization theory
traditionally has been developed using calculus concepts. Thisisillustrated by the LP reduced cost (Z  -C)
criteriaand by the Kuhn-Tucker theory for nonlinear programming. However, in an |P setting, the
discontinuous feasible region does not alow the use of calculus. Thereis no neighborhood surrounding a

feasible point that one can use in developing first derivatives. Margina revenue-marginal cost concepts are

not readily usablein an IP setting. Thereis no decision rule that allows movement to higher valued points.
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Nor can one develop aset of conditions (i.e., Kuhn-Tucker conditions) which characterize optimality.

In summary, |P feasible regions contain afinite number of solution aternatives, however, thereisno
rulefor either the number of feasible solution aternatives or where they arelocated. Solution points may be
on the boundary of the constraints at the extreme points or interior to the feasible region. Further, one cannot
easily move between feasible points. One cannot derive marginal revenue or marginal cost information to
help guide the solution search process and to more rapidly enumerate solutions. This makes |Ps more
difficult to solve. There are avast number of solutions, the number of which to be explored is unknown.
Most I P dgorithms enumerate (either implicitly or explicitly) al possible integer solutions requiring
substantial search effort. The binding constraints are not binding in the linear programming sense. Interior
solutions may occur with the constraint restricting the level of the decision variables.

15.2.1 Extension to Mixed Integer Feasible Regions

The above comments reference pure IP. Many of them, however, are dso relevant to mixed

IP. Consider agraph (Figure 15.3) of the feasible region to the congtraints

2X, + 3X, < 16
3X, + 2X, < 16

2
X

v

0 integer
X, > 0

Thefeasibleregion isaset of horizontal linesfor X , a each feasible integer vaue of X ;. Thisyieldsa

1

discontinuous areain the X ; direction but a continuous areainthe X , direction. Thus, mixed integer
problems retain many of the complicating features of pure integer problems along with some of the niceties of

LP problem feasible regions.

15.3 Sensitivity Analysisand Integer Programming
The reader may wonder, given the concentration of this book on problem formulation and solution

interpretation, why so little was said above about integer programming duality and associated valuation
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information. There are several reasons for thislack of treatment. Duality is not awell-defined subject in the
context of IP. Most LP and NLP duality relationships and interpretations are derived from the calculus
constructs underlying Kuhn-Tucker theory. However, calculus cannot be applied to the discontinuous integer
programming feasible solution region. In generd, dual variables are not defined for |P problems, although
the topic has been investigated (Gomory and Baumol; Williams, 1980). All one can generally stateisthat
dud information is not well defined in the general |P problem. However, there are two aspectsto such a
statement that need to be discussed.

Firgt, most commonly used agorithms printout dua information. But the dua information is often
influenced by congtraints which are added during the solution process. Most solution approachesinvolve the
addition of congtraints to redefine the feasible region so that the integer solutions occur at extreme points (see
the discussions of algorithms below). Thus, many of the shadow prices reported by IP codes are not relevant
to the original problem, but rather are relevant to atransformed problem. The principal difficulty with these
dual pricesisthat the set of transformations is not unique, thus the new information is not unique or complete
(seethe discussion arising in the various duality papers such asthat by Gomory and Baumol or those
referenced in von Randow). Thus, in many cases, the | P shadow price information that appearsin the output
should be ignored.

Second, there does seem to be amajor missing discussion in the literature. Thisinvolvesthe
reliability of dual variables when dealing with mixed |P problems. It would appear to follow directly from LP
that mixed I P shadow prices would be asreliable as L P shadow prices if the constraints right hand sides are
changed in arange that does not imply achange in the solution value of an integer variable. The dua
variables from the congtraints which involve only continuous variables would appear to be most accurate.
Dud variables on congtraintsinvolving linkages between continuous and integer variable solution levels
would be less accurate and constraints which only involve integer variables would exhibit inaccurate dual

variables. Thiswould be an interesting topic for research aswe have not discovered it in the IP literature.
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Thethird dua variable comment regards "binding" congtraints. Consider Figure 15.1. Suppose that
the optimal solution occurs at X=3 and Y=3. Note that this point is strictly interior to the feasible region.
Consequently, according to the complementary dackness conditions of LP, the congtraints would have zero
dua variables. On the other hand, if thefirst constraint was modified so that its right hand side was more
than 17, the solution value could move to X=4 and Y=3. Consequently, the first congtraint is not strictly
binding but arelaxation of itsright hand side can yield to an objective function increase. Therefore,
conceptudly, it hasaduad varigble. Thus, the difficulty with dua variablesin IP isthat they may be nonzero

for nonbinding congtraints.

15.4 Solution Approachesto Integer Programming Problems

IP problems are notorioudy difficult to solve. They can be solved by severa very different
algorithms. Today, algorithm sdlection is an art as some agorithms work better on some problems. We will
briefly discuss algorithms, attempting to expose readersto their characteristics. Thosewho wishtogaina
deep understanding of | P algorithms should supplement this chapter with materia from the literature (e.g.,
see Balinski or Bazaraa and Jarvis, Bedle (1965,1977); Garfinkel and Nemhauser; Geoffrion and Marsten;
Hammer et a.; Hu; Plane and McMillan; Salkin (1975b); Taha (1975); von Randow; Zionts; Nemhauser;
and Woolsey). Consultation with experts, solution experimentation and areview of the literature on solution
codes may aso be necessary when one wishesto solve an |P problem.

Let usdevelop a brief history of |P solution approaches. LP wasinvented in the late 1940's. Those
examining LP rlatively quickly cameto the redlization that it would be desirable to solve problems which
had some integer variables (Dantzig, 1960). Thisled to algorithmsfor the solution of pure IP problems. The
first algorithms were cutting plane agorithms as developed by Dantzig, Fulkerson and Johnson (1954) and
Gomory (1958, 1960, 1963). Land and Doig subsequently introduced the branch and bound a gorithm.

More recently, implicit enumeration (Balas), decompaosition (Benders), lagrangian relaxation (Geoffrion,
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1974) and heuristic (Zanakis and Evans) approaches have been used. Unfortunately, after 20 years of
experience involving literally thousands of studies (see VVon Randow) none of the available algorithms have
been shown to perform satisfactorily for al |P problems. However, certain types of algorithms are good at
solving certain types of problems. Thus, a number of efforts have concentrated on agorithmic development
for specialy structured |P problems. The most impressive recent developmentsinvolve exploitation of
problem structure. The section below briefly reviews historic approaches as wdll as the techniques and
successes of structural exploitation. Unfortunately, complete coverage of these topicsisfar beyond the scope
of thistext. Infact, asingle, comprehensive treatment also appears to be missing from the general 1P
literature, so references will be made to treatments of each topic.

There have been awide variety of approachesto |P problems. The onesthat we will cover below
include Rounding, Branch and Bound, Cutting Planes, Lagrangian Relaxation, Benders Decomposition, and
Heuristics. In addition we will explicitly deal with Structural Exploitation and a catchall other category.
15.4.1 Rounding

Rounding isthe most naive approach to | P problem solution. The rounding approach involves the
solution of the problem as a L P problem followed by an attempt to round the solution to an integer one by: a)
dropping all the fractional parts; or b) searching out satisfactory solutions wherein the variable values are
adjusted to nearby larger or smaller integer values. Rounding is probably the most common approach to
solving IP problems. Most LP problemsinvolve variables with fractiona solution valueswhichin redlity are
integer (i.e., chairs produced, chickens cut up). Fractiona termsin solutions do not make strict sense, but are
sometimes acceptable if rounding introduces a very small change in the value of the variable (i.e. rounding
1003421.1 to 1003421 or even 1003420 is probably acceptable).

Thereis, however, amgjor difficulty with rounding. Consider the example
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X, - TX, < -225
+ 10X, < ™4
X, > 0 and integer

asgraphed in Figure 15.2. In this problem rounding would produce a solution outside the feasible region.

In genera, rounding is often practical, but it should be used with care. One should compare the
rounded and unrounded solutions to see whether after rounding: @) the constraints are adequately satisfied;
and b) whether the difference between the optimal LP and the post rounding objective function value is
reasonably small. If so IPisusually not cost effective and the rounded solution can be used. On the other
hand, if one finds the rounded objective function to be significantly altered or the congtraints violated from a
pragmatic viewpoint, then aformal |P exercise needs to be undertaken.

15.4.2 Cutting Planes

Thefirgt formal 1P agorithmsinvolved the concept of cutting planes.  Cutting planes remove part of
the feasible region without removing integer solution points. The basic idea behind a cutting plane is that the
optima integer point is close to the optimal LP solution, but does not fall at the congtraint intersection so
additional congtraints need to beimposed. Consequently, constraints are added to force the noninteger LP
solution to beinfeasible without eliminating any integer solutions. Thisis done by adding a constraint

forcing the nonbasic variables to be greater than a small nonzero value. Consider the following integer

program:
Maximize X, + X,

2X, + 3X, < 16

3X, + 2X, < 16

X

v

0 and integer

i 2

The optimal LP solution tableau is
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Xl XZ Sl SZ b
obj 14 1 0 O
X, 1 0 6 -432

X, 0 1 -4 6 32
which has X ;=X,=3.2 which isnoni ntegjenc‘ll'he smplest fornpof aguténg plane would be to require the sum

of the nonbasic variablesto be greater than or equal to the fractional part of one of the variables. In

particular, generating a cut from the row where X | isbasic allows a congtraint to be added which required that
06S,-.48S,> 02 Thecutting plane agorithm continually adds such constraints until an integer solution is
obtained.

Much more refined cuts have been developed. Theissue is how should the cut constraint be formed.
Methods for developing cuts appear in Gomory (1958, 1960, 1963).

Severa points need to be made about cutting plane approaches. First, many cuts may be required to
obtain an integer solution. For example, Beale (1977) reportsthat alarge number of cutsis often required (in
fact often more are required than can be afforded). Second, the first integer solution found is the optimal
solution. This solution is discovered after only enough cuts have been added to yield an integer solution.
Consequently, if the solution algorithm runs out of time or space the modeler isleft without an acceptable
solution (thisis often the case). Third, given comparative performance vis-a-vis other algorithms, cutting
plane approaches have faded in popularity (Beale, 1977).

15.4.3 Branch and Bound

The second solution approach devel oped was the branch and bound algorithm. Branch and bound,
originally introduced by Land and Doig, pursues a divide-and-conquer strategy. The agorithm starts with a
L P solution and also imposes constraints to force the L P solution to become an integer solution much as do
cutting planes. However, branch and bound congtraints are upper and lower bounds on variables. Given the
noninteger optimal solution for the example above (i.e, X ; = 3.2), the branch and bound a gorithm would

impose congtraints requiring X , to be at or below the adjacent integer valuesaround 3.2;i.e, X | <3and X, >
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4, Thisleadsto two digoint problems, i.e,

Maximize 14X, + X, Maximize 1.4X, + X,
2X, + 3X, < 16 2X, + 3X, < 16
3X, + 2X, < 16 | and 3X, + 2X, < 16
X, < 3 X, > 4
Xy, X, > 0 X, X, > 0

The branch and bound solution procedure generates two problems (branches) after each LP solution.
Each problem excludes the unwanted noninteger solution, forming an increasingly more tightly constrained
LP problem. There are severa decisions required. One must both decide which variable to branch upon and
which problem to solve (branch to follow). When one solves a particular problem, one may find an integer
solution. However, one cannot be sureit is optimal until al problems have been examined. Problems can be
examined implicitly or explicitly. Maximization problemswill exhibit declining objective function values
whenever additional constraints are added. Consequently, given afeasible integer solution has been found,
then any solution, integer or not, with a smaller objective function value cannot be optimal, nor can further
branching on any problem below it yield a better solution than the incumbent ( since the objective function
will only decling). Thus, the best integer solution found at any stage of the algorithm provides a bound
limiting the problems (branches) to be searched. The bound is continually updated as better integer solutions
arefound.

The problems generated at each stage differ from their parent problem only by the bounds on the
integer variables. Thus, aLP agorithm which can handle bound changes can easily carry out the branch and
bound calculations.

The branch and bound approach is the most commonly used general purpose IP solution algorithm
(Bedle, 1977; Lawler and Wood). Itisimplemented in many codes (e.g., OSL, LAMPS, and LINDO)

including all of those interfaced with GAMS. However, its use can be expensive. The algorithm doesyield
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intermediate solutions which are usable athough not optimal. Often the branch and bound agorithm will
come up with near optimal solutions quickly but will then spend alot of time verifying optimality. Shadow
prices from the agorithm can be mideading since they include shadow prices for the bounding constraints.
A specidized form of the branch and bound agorithm for zero-one programming was developed by
Baas. Thisagorithmiscaled implicit enumeration. This method has also been extended to the mixed
integer case asimplemented in LINDO (Schrage, 1981b).
15.4.5 L agrangian Relaxation
Lagrangian relaxation (Geoffrion (1974), Fisher (1981, 1985)) is another area of |P agorithmic
development. Lagrangian relaxation refersto a procedure in which some of the constraints are relaxed into
the objective function using an approach motivated by Lagrangian multipliers. The basic Lagrangian

Relaxation problem for the mixed integer program:

Maximize CX + FY

stt. AX + GY < b
DX + HY < e
X > 0, Y > 0 ad integer,

involves discovering a set of Lagrange multipliers for some constraints and relaxing that set of constraints
into the objective function. Given that we choose to relax the second set of congtraints using lagrange

multipliers (A) the problem becomes

Maximize CX + FY - A(DH + HY - ¢
st. AX + GY
X > 0, Y

b
0 and integer,

IA

v

The main ideais to remove difficult constraints from the problem so the integer programs are much easier to
solve. |P problemswith structures like that of the transportation problem can be directly solved with LP.

Thetrick then isto choose the right constraints to relax and to develop vaues for the lagrange multipliers (
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leading to the appropriate solution.

Lagrangian Relaxation has been used in two settings: 1) to improve the performance of bounds on
solutions; and 2) to develop solutions which can be adjusted directly or through heuristics so they are
feasible in the overall problem (Fisher (1981, 1985)). Animportant Lagrangian Relaxation result isthat the
relaxed problem provides an upper bound on the solution to the unrelaxed problem at any stage. Lagrangian
Relaxation has been heavily used in branch and bound a gorithms to derive upper bounds for a problem to see
whether further traversal down that branch is worthwhile.

Lagrangian Relaxation has been applied extensively. There have been studies of the travelling
salesman problem (Bazaraa and Goode), power generation systems (Muckstadt and Koenig); capacitated
location problem (Cornugials, et al.); capacitated facility location problem (Geoffrion and McBride); and
generalized assignment problem (Ross and Soland). Fisher (1981,1985) and Shapiro (1979a) present survey
articles.

15.4.6 Bender s Decomposition

Another agorithm for IPis called Benders Decomposition. This agorithm solves mixed integer
programs via structural exploitation. Benders developed the procedure, thereafter called Benders
Decomposition, which decomposes a mixed integer problem into two problems which are solved iteratively -
an integer master problem and a linear subproblem.

The success of the procedure involves the structure of the subproblem and the choice of the
subproblem. The procedure can work very poorly for certain structures. (e.g. see McCarl, 1982a or Bazarra,
Jarvisand Sherdi.)

A decomposable mixed IP problemiis.

Maximize FX + CZ
st. GX < b
HX + AZ < b,
DZ < b,

v
o
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Development of the decomposition of this problem proceeds by iteratively devel oping feasible points

X" and solving the subproblem:

Maximize CZ
st AZ < b, - HXx (o)

Dz < b
Z

v
o

Solution to this subproblem yields the dua variablesin parentheses. Inturn a"master” problemisformed as

follows

Maximize X +Q
X, o, v, Q
Q< ab, -HX) +ybyi =12 .p
GX < b,
X integer
Q0
<

This problem contains the dual information from above and generatesanew X value. The congtraint
involving Q gives a prediction of the subproblem objective function arising from the dua variables from the
i"" previous guess at X. Inturn, this problem produces a new and better guessat X. Eachiteration addsa
constraint to the master problem. The objective function consists of FX + Q, where Q is an approximation of
CZ. The master problem objective function therefore constitutes a monotonically nonincreasing upper bound
astheiterations proceed. The subproblem objective function (CZ) at any iteration plus FX can be regarded
asalower bound. The lower bound does not increase monotonically. However, by choosing the larger of the

current candidate lower bound and the incumbent lower bound, a monotonic nondecreasing sequence of
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boundsisformed. The upper and lower bounds then give a monotonically decreasing spread between the
bounds. The algorithm user may stop the solution process at an acceptably small bound spread. The last
solution which generated alower bound isthe solution which iswithin the bound spread of the optimal
solution. Theform of the overall problem guarantees global optimality in most practical cases. Global
optimality will occur when all possible X's have been enumerated (either implicitly or explicitly). Thus,
Benders decomposition convergence occurs when the difference between the boundsis driven to zero. When
the problem is stopped with a tolerance, the objective function will be within the tolerance, but thereis no
relationship giving distance between the variable solutions found and the true optimal solutions for the
varidbles. (i.e,, the distance of Z* and X* from the true optimal Z'sand X's). Convergence will occur ina
practica setting only if for every X ardlevant set of dual variablesisreturned. Thiswill only bethe caseiif
the subproblem is bounded and has afeasible solution for each X that the master problem yields. Thismay
not be generdly true; artificia variables may be needed.

However, the boundedness and feasibility of the subproblem says nothing about the rate of
convergence. A modest sized linear program will have many possible (thousands, millions) extreme point
solutions. Thered art of utilizing Benders decomposition involves the recognition of appropriate problems
and/or problem structures which will converge rapidly. The general statementsthat can be made are:

1 The decomposition method does not work well when the X variables chosen by the master
problem do not yield a feasible subproblem. Thus, the more accurately the congtraintsin the
master problem portray the conditions of the subproblem, the faster will be convergence.
(See Geoffrion and Graves, Danok, McCarl and White (1978); Polito; Magnanti and Wong;
and Sherali for discussion.)

2. Thetighter (more constrained) the feasible region of the master problem the better. (See
Magnanti and Wong; and Sherali.)

3. When possible, congtraints should be entered in the master problem precluding feasible yet
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unrealistic (suboptimal) solutions to the overall problem. (See the minimum machinery
constraints in Danok, McCarl and White, 1978.)

The most common reason to use Benders is to decompose large mixed integer problem into asmall,
difficult master problem and alarger simple linear program. This alows the solution of the problem by two
pieces of software which individually would not be adequate for the overall problem but collectively are
sufficient for the resultant pieces. In addition, the decomposition may be used to isolate particular easy-to-
solve subproblem structures (see the isolation of transportation problems asin Geoffrion and Graves or
Hilger et d.). Finaly, multiple levels of decomposition may be done in exploiting structure (see Polito).
15.4.7 Heuristics

Many |P problems are combinatorial and difficult to solve by nature. In fact, the study of NP
complete problems (Papadimitrou and Steiglitz) has shown extreme computational complexity for problems
such asthe traveling salesman problem. Such computational difficulties have led to alarge number of heur-
istics. These heurigtics (following Zanakis and Evans) are used when: a) the quality of the data does not
merit the generation of exact optimal solutions; b) asimplified model has been used, and/or ¢) when ardiable
exact method is not available, computationaly attractive, and/or affordable. Argumentsfor heuristics are dso
presented regarding improving the performance of an optimizer where a heuristic may be used to savetimein
abranch and bound code, or if the problem is repeatedly solved. Many IP heuristics have been devel oped,
some of which are specific to particular types of problems. For example, there have been a number of
traveling salesman problem heurigtics as reviewed in Golden et a. Heuristics have been developed for
general 0-1 programming (Senju and Toyoda; Toyoda) and general | P (Glover; Kochenberger, McCarl, and
Wyman), aswell as 0-1 polynomia problems (Granot). Zanakis and Evans review several heuristics, while
Wyman presents computationa evidence on their performance. Generally, heuristics perform well on specia
types of problems, quite often coming up with errors of smaller than two percent. Zanakis and Evans; and

Wyman both provide discussions of sdlections of heuristics vis-a-vis one another and optimizing methods.
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Heuristics aso do not necessarily reveal the true optimal solution, and in any problem, one is uncertain asto
how far oneisfrom the optima solution athough the Lagrangian Rel axation technique can make bounding
statements.
15.4.8 Structural Exploitation

Y ears of experience and thousands of papers on |P have indicated that general-purpose IP algorithms
do not work satisfactorily for al 1P problems. The most promising developmentsin the last severa years
have involved structural exploitation, where the particular structure of a problem has been used in the
development of the solution agorithm. Such approaches have been the crux of the development of anumber
of heuristics, the Benders Decomposition approaches, Lagrangian Relaxation and a number of problem
reformulation approaches. Specialized branch and bound algorithms adapted to particular problems have
also been developed (Fuller, Randolph and Klingman; Glover et d. ,1978). The application of such
algorithms has often led to spectacular results, with problems with thousands of variables being solved in
seconds of computer time (e.g., see the computational reportsin Geoffrion and Graves; Zanakis; and the
referencesin Fisher, 1985). The main mechanisms for structural exploitation are to develop an algorithm
especialy tuned to a particular problem or, more generally, to transform a problem into asimpler problem to
solve.
15.4.9 Other Solution Algorithmsand Computer Algorithms

The above characterization of solution algorithmsis not exhaustive. A field asvast as|P has
spawned many other types of agorithms and algorithmic approaches. The interested reader should consult
the literature reviews in von Randow; Geoffrion (1976); Balinski; Garfinkel and Nemhauser; Greenberg

(1971); Woolsey; Shapiro (1979a, 1979b); and Cooper as well asthose in textbooks.

15.5 The Quest for Global Optimality: Non-Convexity

Most of the IP solution material, as presented above, showed the | P algorithms as involving some
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sort of an iterative search over the feasible solution region. All possible solutions had to be either explicitly
or implicitly enumerated. The basic idea behind most IP agorithmsisto search out the solutions. The search
process involvesimplicit or explicit enumeration of every possible solution. The implicit enumeration is done
by limiting the search based on optimality criterion (i.e., that solutionswill not be examined with worse
objective functions than those which have been found). The enumeration concept arises because of the
nonconvex nature of the constraint set; in fact, in IPit is possible to have adigoint constraint set. For
example, one could implement an IP problem with afeasible region requiring X to be either greater than 4 or
lessthan 5. Thus, it isimportant to note that | P algorithms can guarantee global optimality only through an
enumerative search. Many of the algorithms a so have provisions where they stop depending on tolerances.
These particular algorithmswill only be accurate within the tolerance factor specified and may not reved the

true optimal solution.

15.6 Formulation Tricksfor Integer Programming - Add More Constraints

IP problems, as aluded to above, involve enumerative searches of the feasible region in an effort to
find the optimal IP solutions. Termination of adirection of search occursfor one of threereasons. 1) a
solution is found; 2) the objective function is found to go below some certain value, or 3) the direction is
found to possess no feasible integer solutions. This section argues that this process is speeded up when the
modeler imposes as many reasonable constraints as possible for defining the feasible and optimal region.
Reasonable means that these constraints are not redundant, each uniquely hel ping define and reduce the size
of the feasible solution space.

L P agorithms are sensitive to the number of congtraints. Modelers often omit or eliminate
constraints when it appears the economic actions within the model will make these constraints unnecessary.
However, in IP, it is often desirable to introduce constraints which, while appearing unnecessary, can greatly

decrease solutiontime. In order to clarify this argument, three cases are cited from our experiences with the
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solution of IP models.

In the first example, drawn from Danok's masters thesis (1976), Danok was solving amixed |P
problem of machinery sdlection. The problem was solved using Benders decomposition, in which the integer
program for machinery sdlection was solved iteratively in association with a LP problem for machinery use.
Danok solved two versions. In the first, the machinery itemswere largely unconstrained. In the second,
Danok utilized the amount of machinery bought in the LP solution as a guide in imposing constraints on the
maximum and minimum amount of types of machinery. Danok constrained the solution so that no more than
50 percent more machinery could be purchased than that utilized in the optimal LP solution (i.e., ignoring the
integer restrictions). The solution time reduction between the formulations were dramatic. The mode with
the extra congtraints solved in less than 10 percent of the computer time. However, the solutions were
identical and far away from the LP derived constraints. Thus, these constraints greatly reduced the number of
solutions which needed to be searched through, permitting great efficienciesin the solution process. In fact,
on the larger Danok problem, the amount of computer time involved was considerable (over 1,000 seconds
per run) and these constraints allowed completion of the research project.

The second example arose in Palito's Ph.D. thesis. Polito was solving awarehouse location type
problem and solved two versions of the problem (again with Benders decomposition). In thefirst version,
constraints were not imposed between the total capacity of the plants constructed and the demand. Inthe
second problem, the capacity of the plants located were required to be greater than or equal to the existing
demand. Inthefirst problem, the algorithm solved in more than 350 iterations; in the second problem only
eight iterations were required.

The third example arises in Williams (1978a or 1978b) wherein congtraints like

Y+Y2—MdsO

1

including the indicator variable d, are replaced with

copyright 1997 Bruce A. McCarl and Thomas H. Spreen 15-26



< =<
| |
Z Z
o o
IA IA
o O

which has more congtraints. The resultant solution took only 10 percent of the solution time.
In al casesthe impaosition of seemingly obvious congtraints, led to great efficienciesin solution time.
Thus, the integer programmer should use congtraints to tightly define the feasible region. This diminates

possible solutions from the enumeration process.

15.7 IP Solutionsand GAM S
The solution of integer programs with GAMS s achieved basically by introducing anew class of

variable declaration statements and by invoking an IP solver. The declaration statement identifies selected
variablesto either be BINARY (zero one) or INTEGER. In turn, the moded is solved by utilizing a solved
statement which says"USING MIP'. Table 1 shows an example formulation and Table 2 the GAMSinput
string. Thiswill cause GAMSto usethe available integer solvers. Currently the code ZOOM s distributed
with the student version, but we do not recommend ZOOM for practical integer programming problems.
Those wishing to solve meaningful problems should use OSL, LAMPS, XA, CPLEX or one of the other

integer solvers.
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Table15.1.

Maximize  7X, -3X, -10X,
Xy -2X, <0
Xy -20X <0

X,;>0 X, > Ointeger X;€ 0,1

Table 15.2. GAM S Input for Example I nteger Program

5 PCSI Tl VE VARI ABLE X1

6 I NTEGER VARI ABLE X2

7 Bl NARY VARI ABLE X3

8 VARI ABLE oBJ

9
10 EQUATI ONS OBJF
11 X1X2
12 X1X3;
13
14  OBJF.. 7* X1- 3* X2-10* X3 =E= 0BJ;
15 X1X2. . X1-2*X2 =L=0;
16 X1X3. . X1-20*X3 =L=0;
17

18 MCDEL | PTEST /ALL/;
19 SOLVE | PTEST USING M P NAXI M ZI NG OBJ,
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Y-AXis

Figure 15.1 Graph of Feasible Integer Points for First LP Problem
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Figure 15.2 Graph of Feasible Integer Points for Second Integer Problem

10 ‘ ‘ + + ’ + + ’
’ ¢ ’ ’ ’ ¢ ‘ ¢
8 ‘ ¢ ’ ¢ ¢ ‘ ’ ’
¢ ' ‘ ’ ‘ ¢ ’ ’
6 ¢ ¢ ¢ ’ ¢ ¢ ¢ ¢
’ ' T ¢ '
4 ¢ ¢ ' ¢ ¢ ’
' ’ ’ ¢ ¢ ¢ ¢ '
2 ' ’ ’ ¢ ¢ ¢ ’ ’
’ ¢ ’ ¢ ¢ ¢ ’ ’
0 ’ ’ ‘ ‘ ’ ‘

0 2 4 6
X1

copyright 1997 Bruce A. McCarl and Thomas H. Spreen 15-35

10



X1

Figure 15.3 Mixed Integer Feasible Region
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