
copyright 1997 Bruce A. McCarl and Thomas H. Spreen

CHAPTER XV: APPLIED INTEGER PROGRAMMING . 15-1
15.1 Why Integer Programming . 15-2

15.1.1 Fixed Cost . 15-2
15.1.2 Logical Conditions . 15-3

15.1.2.1 Either-or-Active Constraints . 15-5
15.1.2.2 An Aside: Mutual Exclusivity . 15-5
15.1.2.3 Multiple Active Constraints . 15-6
15.1.2.4 Conditional Restrictions . 15-6

15.1.3 Discrete Levels of Resources . 15-7
15.1.4 Distinct Variable Values . 15-7
15.1.5 Nonlinear Representations . 15-8
15.1.6 Approximation of Nonlinear Functions . 15-9

15.2 Feasible Region Characteristics and Solution Difficulties 15-10
15.2.1 Extension to Mixed Integer Feasible Regions 15-12

15.3 Sensitivity Analysis and Integer Programming . 15-12
15.4 Solution Approaches to Integer Programming Problems 15-14

15.4.1 Rounding . 15-15
15.4.2 Cutting Planes . 15-16
15.4.3 Branch and Bound . 15-17
15.4.5 Lagrangian Relaxation . 15-19
15.4.6 Benders Decomposition . 15-20
15.4.7 Heuristics . 15-23
15.4.8 Structural Exploitation . 15-24
15.4.9 Other Solution Algorithms and Computer Algorithms 15-24

15.5 The Quest for Global Optimality: Non-Convexity . 15-24
15.6 Formulation Tricks for Integer Programming - Add More Constraints 15-25
15.7 IP Solutions and GAMS . 15-27
References . 15-28

Max C1W C2X C3Y

s.t. A1W A2X A3Y b

W 0

X 0 and integer

Y 0 or 1

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

CHAPTER XV: APPLIED INTEGER PROGRAMMING

LP assumes continuity of the solution region. LP decision variables can equal whole numbers or any

other real number (3 or 4 as well as 3.49876). However, fractional solutions are not always acceptable.

Particular items may only make sense when purchased in whole units (e.g., tractors, or airplanes). Integer

programming (IP) requires a subset of the decision variables to take on integer values (i.e., 0, 1, 2, etc.). IP

also permits modeling of fixed costs, logical conditions, discrete levels of resources and nonlinear functions.

IP problems usually involve optimization of a linear objective function subject to linear constraints,

nonnegativity conditions and integer value conditions. The integer valued variables are called integer

variables. Problems containing integer variables fall into several classes. A problem in which all variables

are integer is a pure integer IP problem. A problem with some integer and some continuous variables, is a

mixed-integer IP problem. A problem in which the integer variables are restricted to equal either zero or one

is called a zero-one IP problem. There are pure zero-one IP problems where all variables are zero-one and

mixed zero-one IP problems containing both zero-one and continuous variables. The most general

formulation of the IP problem is:

where the W's represent continuous variables; the X's integer variables, and the Y's zero-one variables.

Our coverage of integer programming is divided into two chapters. This chapter covers basic integer

programming problem formulation techniques, and a few characteristics relative to the solution and

interpretation of integer programming problems. The next chapter goes into a set of example problems.

Max CX FY

s.t. X MY 0

X 0

Y 0 or 1

15-2copyright 1997 Bruce A. McCarl and Thomas H. Spreen

15.1 Why Integer Programming

The most fundamental question regarding the use of integer programming (IP) is why use it.

Obviously, IP allows one to depict discontinuous decision variables, such as those representing acquisition of

indivisible items such as machines, hired labor or animals. In addition, IP also permits modeling of fixed

costs, logical conditions, and discrete levels of resources as will be discussed here.

15.1.1 Fixed Cost

Production processes often involve fixed costs. For example, when manufacturing multiple products,

fixed costs may arise when shifting production between products (i.e., milk plant operators must incur

cleaning costs when switching from chocolate to white milk). Fixed costs can be modeled using the following

mixed integer formulation strategy:

Let: X denote the continuous number of units of a good produced;

Y denote a zero-one variable indicating whether or not fixed costs are incurred;

C denote the per unit revenue from producing X;

F denote the fixed cost incurred when producing a nonzero quantity of regardless of how

many units are produced; and

M denote a large number.

The formulation below depicts this problem:

Here, when X = 0, the constraint relating X and Y allows Y to be 0 or 1. Given F > 0 then the objective

function would cause Y to equal 0. However, when 0 < X M, then Y must equal 1. Thus, any non-zero

production level for X causes the fixed cost (F) to be incurred. The parameter M is an upper bound on the

Max
m

CmXm
k

FkYk

s.t. Xm
k

CapkmYk 0 for all m

Xm 0, Yk 0 or 1 for all k and m,

15-3copyright 1997 Bruce A. McCarl and Thomas H. Spreen

production of X (a capacity limit).

The fixed cost of equipment investment may be modeled similarly. Suppose one is modeling the

possible acquisition of several different-sized machines, all capable of doing the same task. Further, suppose

that per unit profits are independent of the machine used, that production is disaggregated by month, and that

each machine's monthly capacity is known. This machinery acquisition and usage decision problem can be

formulated as:

where m denotes month, k denotes machine, C is the profit obtained from production in month m; X is them m

quantity produced in month m; F is the annualized fixed cost of the k machine; Y is a zero-one variablek k
th

indicating whether or not the k machine is purchased; and Cap is the capacity of the k machine in the mth th th
km

month.

The overall formulation maximizes annual operating profits minus fixed costs subject to constraints

that permit production only when machinery has been purchased. Purchase of several machinery items with

different capacity characteristics is allowed. This formulation permits X to be non-zero only when at leastm

one Y is non-zero. Again, machinery must be purchased with the fixed cost incurred before it is used. Oncek

purchased any machine allows production up to its capacity in each of the 12 months. This formulation

illustrates a link between production and machinery purchase (equivalently purchase and use of a piece of

capital equipment) through the capacity constraint. One must be careful to properly specify the fixed costs so

that they represent the portion of cost incurred during the time-frame of the model.

15.1.2 Logical Conditions

IP also allows one to depict logical conditions. Some examples are:

i
Xi MY 0

X MY1 0

Z MY2 0

Y1 Y2 1

X, Z 0

Y1, Y2 0 or 1

15-4copyright 1997 Bruce A. McCarl and Thomas H. Spreen

a) Conditional Use - A warehouse can be used only if constructed.

b) Complementary Products - If any of product A is produced, then a minimum quantity of

product B must be produced.

c) Complementary Investment - If a particular class of equipment is purchased then only

complementary equipment can be acquired.

d) Sequencing - Operation A must be entirely complete before operation B starts.

All of these conditions can be imposed using a zero-one indicator variable . An indicator variable

tells whether a sum is zero or nonzero. The indicator variable takes on a value of one if the sum is nonzero

and zero otherwise. An indicator variable is imposed using a constraint like the following:

where M is a large positive number, X depicts a group of continuous variables, and Y is an indicator variablei

restricted to be either zero or one. The indicator variable Y indicates whether or not any of the X's are

non-zero with Y=1 if so, zero otherwise. Note this formulation requires that M must be as large as any

reasonable value for the sum of the X's.

Indicator variables may be used in many ways. For example, consider a problem involving two

mutually exclusive products, X and Z. Such a problem may be formulated using the constraints

Here, Y indicates whether or not X is produced, while Y indicates whether or not Z is produced. The third1 2

constraint, Y + Y 1, in conjunction with the zero-one restriction on Y and Y , imposes mutual1 2 1 2

exclusivity. Thus, when Y = 1 then X can be produced but Z cannot. Similarly, when Y = 1 then X must be1 2

either A1X b1

or A2X b2

A1X MY b1

A2X M(1 Y) b2

X 0, Y 0 or 1

A1X MY b1

A2X MY b2 M

X 0, Y 0 or 1

A1X MY1 b1

A2X MY2 b2

Y1 Y2 1

X 0, Y1, Y2 0 or 1.

15-5copyright 1997 Bruce A. McCarl and Thomas H. Spreen

zero while 0 Z M. Consequently, either X or Z can be produced, but not both.

15.1.2.1 Either-or-Active Constraints

Many types of logical conditions may be modeled using indicator variables and mutual exclusivity.

Suppose only one of two constraints is to be active, i.e.,

Formulation of this situation may be accomplished utilizing the indicator variable Y as follows

This is rewritten as

Here M is a large positive number and the value of Y indicates which constraint is active. When Y = 1 the

second constraint is active while the first constraint is removing it from active consideration. Conversely,

when Y = 0 the first constraint is active.

15.1.2.2 An Aside: Mutual Exclusivity

The above formulation contains a common trick for imposing mutual exclusivity. The formulation

could have been written as:

However, one can solve for Y in the third constraint yielding Y = l - Y . In turn, substituting in the first 2 2 1

A1X MY1 b1

A2X M(1 Y1) b2

A1X MY1 b1

A2X MY2 b2

:

:

AKX MYK bK

i
Yi K P

X 0, Yi 0 or 1 for all i

i
Xi MZ 0

k
Yk RZ 0

Xi, Yk 0, Z 0 or 1

15-6copyright 1997 Bruce A. McCarl and Thomas H. Spreen

two equations gives

which is the compact formulation above. However, Williams (1978b) indicates that the more extensive

formulation will solve faster.

15.1.2.3 Multiple Active Constraints

The formulation restricting the number of active constraints may be generalized to logical

conditions where P out of K constraints are active (P < K). This is represented by

Here, Y identifies whether constraint i is active (Y = 0) or not (Y = 1). The last constraint requires exactlyi i i

K - P of the K constraints to be non-active, thus P constraints are active.

15.1.2.4 Conditional Restrictions

Logical conditions and indicator variables are useful in imposing conditional restrictions. For

example, nonzero values in one group of variables (X) might imply nonzeros for another group of variables

(Y). This may be formulated as

Here X are the elements of the first group; Z is an indicator variable indicating whether any X has beeni i

or

X1 F1Y1 F2Y2 F3Y3 0

X2 F1(1 Y1) F2(1 Y2) F3(1 Y3) 0

X2 F1Y1 F2Y2 F3Y3 F1 F2 F3

Xk 0, Yi 0 or 1 for all k and i

X V1Y1 V2Y2 V3Y3 0

Y1 Y2 Y3 1

X 0, Y 0 or 1.

15-7copyright 1997 Bruce A. McCarl and Thomas H. Spreen

purchased; Y are the elements of the second group; and M is a large number. Z can be zero only if all the X'sk

are 0 and must be one otherwise. The sum of the Y's must be greater than R if the indicator variable Z is one.

15.1.3 Discrete Levels of Resources

Situations may arise where variables are constrained by discrete resource conditions. For example,

suppose a farm has three fields. Farmers usually plant each field to a single crop. Thus, a situation might

require crops to be grown in acreages consistent with entire fields being planted to a single crop. This

restriction can be imposed using indicator variables. Assume that there are 3 fields of sizes F , F , and F ,1 2 3

each of which must be totally allocated to either crop 1 (X) or crop 2 (X). Constraints imposing such a1 2

condition are

The variable Y indicates whether field i is planted to crop 1 (Y =1) or crop 2 (Y =0). The X variables equali i i i

the total acreage of crop i which is planted. For example, when Y =1 and Y , Y = 0, then the acreage of crop1 2 3

1 (X) will equal F while the acreage of crop 2 (X) will equal F + F . The discrete variables insure that the1 1 2 2 3

fields are assigned in a mutually exclusive fashion.

15.1.4 Distinct Variable Values

Situations may require that decision variables exhibit only certain distinct values (i.e., a variable

restricted to equal 2, 4, or 12). This can be formulated in two ways. First, if the variable can take on

distinct values which exhibit no particular pattern then:

Here, the variable X can take on either the discrete value of V , V , or V , where V may be any real number. 1 2 3 i

X Y1 2Y2 4Y3 8Y4 5

X 0, Yi 0 or 1

X
N

k 1
2k 1Yk a

Z X1X2.

15-8copyright 1997 Bruce A. McCarl and Thomas H. Spreen

The second constraint imposes mutual exclusivity between the allowable values.

On the other hand, if the values fall between two limits and are separated by a constant interval, then

a different formulation is applicable. The formulation to be used depends on whether zero-one or integer

variables are used. When using zero-one variables, a binary expansion is employed. If, for example, X were

restricted to be an integer between 5 and 20 the formulation would be:

Here each Y is a zero-one indicator variable, and X is a continuous variable, but in the solution, X will equali

an integer value. When all the Y's equal zero, then X = 5. If Y and Y both equal 1 then X = 15. Through2 4

this representation, any integer value of X between 5 and 20 can occur. In general through the use of N zero-

one variables, any integer value between the right hand side and the right hand side plus 2 -1 can beN

represented. Thus, the constraint

restricts X to be any integer number between a and a+2 -1. This formulation permits one to model generalN

integer values when using a zero-one IP algorithm.

15.1.5 Nonlinear Representations

Another usage of IP involves representation of the multiplication of zero-one variables. A term

involving the product of two zero-one variables would equal one when both integer variables equal one and

zero otherwise. Suppose Z equals the product of two zero-one variables X and X , 1 2

We may replace this term by introducing Z as a zero-one variable as follows:

Z X1 X2 1

2Z X1 X2 0

Z, X1, X2, 0 or 1

1 2 3 4 1

1 Z1 0

2 Z2 0

3 Z3 0

4 Z4 0

Z1 Z2 Z3 Z4 2

Z1 Z3 1

Z1 Z4 1

Z2 Z4 1

i 0 Zi 0 or 1

15-9copyright 1997 Bruce A. McCarl and Thomas H. Spreen

The first constraint requires that Z+1 be greater than or equal to X + X . Thus, Z is forced to equal 1 if both1 2

X and X equal one. The second constraint requires 2Z to be less than or equal to X + X . This permits Z to1 2 1 2

be nonzero only when both X and X equal one. Thus, Z will equal zero if either of the variables equal zero1 2

and will equal one when both X and X are one. One may not need both constraints, for example, when Z1 2

appears with positive returns in a profit maximizing objective function the first constraint could be dropped,

although as discussed later it can be important to keep many constraints when doing applied IP.

15.1.6 Approximation of Nonlinear Functions

IP is useful for approximating nonlinear functions, which cannot be approximated with linear

programming i.e., functions with increasing marginal revenue or decreasing marginal cost. (LP step

approximations cannot adequately approximate this; the resultant objective function is not concave.) One can

formulate an IP to require the approximating points to be adjacent making the formulation work

appropriately. If one has four step variables, an adjacency restriction can be imposed as follows:

The lambdas () are the approximation step variables; the Z 's are indicator variables indicating whether ai

2X 3Y 16

3X 2Y 16.

 We will reference pure IP in this section.1

15-10copyright 1997 Bruce A. McCarl and Thomas H. Spreen

particular step variable is non-zero. The first constraint containing Z through Z allows no more than two1 4

nonzero step variables. The next three constraints prohibit non-adjacent nonzero 's.

There is also a second type of nonlinear approximation using zero-one variables. This will be

demonstrated in the next chapter on economies of scale.

15.2 Feasible Region Characteristics and Solution Difficulties

IP problems are notoriously difficult to solve. This section supplies insight as to why this is so. 1

Nominally, IP problems seem easier to solve than LP problems. LP problems potentially have an infinite

number of solutions which may occur anywhere in the feasible region either interior, along the constraints, or

at the constraint intersections. However, it has been shown that LP problems have solutions only at

constraint intersections (Dantzig, 1963). Thus, one has to examine only the intersections, and the one with

the highest objective function value will be the optimum LP solution. Further, in an LP given any two

feasible points, all points in between will be feasible. Thus, once inside the feasible region one need not

worry about finding infeasible solutions. Additionally, the reduced cost criterion provides a decision rule

which guarantees that the objective function will increase when moving from one feasible point to another (or

at least not decrease). These properties greatly aid solution.

However, IP is different. This is best shown through an example. Suppose that we define a pure IP

problem with nonnegative integer variables and the following constraints.

A graph of this situation is given by Figure 15.1. The diamonds in the graph represent the integer points,

which are the potential integer solutions. Obviously the feasible integer solution points fall below or on the

constraints while simultaneously being above or on the X and Y axes. For this example the optimal solution

X1 7X2 23.1

X1 10X2 54

15-11copyright 1997 Bruce A. McCarl and Thomas H. Spreen

is probably not on the constraint boundaries (i.e. X=Y may be optimal), much less at the constraint

intersections. This introduces the principal difficulty in solving IP problems. There is no particular location

for the potential solutions. Thus, while the equivalent LP problem would have four possible solutions (each

feasible extreme point and the origin), the IP problem has an unknown number of possible solutions. No

general statement can be made about the location of the solutions.

A second difficulty is that, given any two feasible solutions, all the points in between are not feasible

(i.e., given [3 3] and [2 4], all points in between are non-integer). Thus, one cannot move freely within the IP

area maintaining problem feasibility, rather one must discover the IP points and move totally between them.

Thirdly, it is difficult to move between feasible points. This is best illustrated by a slightly

different example. Suppose we have the constraints

where X and X are nonnegative integer variables. A graph of the solution space appears in Figure 15.2. 1 2

Note here the interrelationship of the feasible solutions do not exhibit any set patterns. In the first graph one

could move between the extreme feasible solutions by moving over one and down one. In Figure 15.2,

different patterns are involved. A situation which greatly hampers IP algorithms is that it is difficult to

maintain feasibility while searching for optimality. Further, in Figure 15.2, rounding the continuous solution

at say (4.6, 8.3) leads to an infeasible integer solution (at 5, 8).

Another cause of solution difficulties is the discontinuous feasible region. Optimization theory

traditionally has been developed using calculus concepts. This is illustrated by the LP reduced cost (Z -C)j j

criteria and by the Kuhn-Tucker theory for nonlinear programming. However, in an IP setting, the

discontinuous feasible region does not allow the use of calculus. There is no neighborhood surrounding a

feasible point that one can use in developing first derivatives. Marginal revenue-marginal cost concepts are

not readily usable in an IP setting. There is no decision rule that allows movement to higher valued points.

2X1 3X2 16

3X1 2X2 16

X1 0 integer

X2 0

15-12copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Nor can one develop a set of conditions (i.e., Kuhn-Tucker conditions) which characterize optimality.

In summary, IP feasible regions contain a finite number of solution alternatives, however, there is no

rule for either the number of feasible solution alternatives or where they are located. Solution points may be

on the boundary of the constraints at the extreme points or interior to the feasible region. Further, one cannot

easily move between feasible points. One cannot derive marginal revenue or marginal cost information to

help guide the solution search process and to more rapidly enumerate solutions. This makes IP's more

difficult to solve. There are a vast number of solutions, the number of which to be explored is unknown.

Most IP algorithms enumerate (either implicitly or explicitly) all possible integer solutions requiring

substantial search effort. The binding constraints are not binding in the linear programming sense. Interior

solutions may occur with the constraint restricting the level of the decision variables.

15.2.1 Extension to Mixed Integer Feasible Regions

The above comments reference pure IP. Many of them, however, are also relevant to mixed

IP. Consider a graph (Figure 15.3) of the feasible region to the constraints

The feasible region is a set of horizontal lines for X at each feasible integer value of X . This yields a2 1

discontinuous area in the X direction but a continuous area in the X direction. Thus, mixed integer1 2

problems retain many of the complicating features of pure integer problems along with some of the niceties of

LP problem feasible regions.

15.3 Sensitivity Analysis and Integer Programming

The reader may wonder, given the concentration of this book on problem formulation and solution

interpretation, why so little was said above about integer programming duality and associated valuation

15-13copyright 1997 Bruce A. McCarl and Thomas H. Spreen

information. There are several reasons for this lack of treatment. Duality is not a well-defined subject in the

context of IP. Most LP and NLP duality relationships and interpretations are derived from the calculus

constructs underlying Kuhn-Tucker theory. However, calculus cannot be applied to the discontinuous integer

programming feasible solution region. In general, dual variables are not defined for IP problems, although

the topic has been investigated (Gomory and Baumol; Williams, 1980). All one can generally state is that

dual information is not well defined in the general IP problem. However, there are two aspects to such a

statement that need to be discussed.

First, most commonly used algorithms printout dual information. But the dual information is often

influenced by constraints which are added during the solution process. Most solution approaches involve the

addition of constraints to redefine the feasible region so that the integer solutions occur at extreme points (see

the discussions of algorithms below). Thus, many of the shadow prices reported by IP codes are not relevant

to the original problem, but rather are relevant to a transformed problem. The principal difficulty with these

dual prices is that the set of transformations is not unique, thus the new information is not unique or complete

(see the discussion arising in the various duality papers such as that by Gomory and Baumol or those

referenced in von Randow). Thus, in many cases, the IP shadow price information that appears in the output

should be ignored.

Second, there does seem to be a major missing discussion in the literature. This involves the

reliability of dual variables when dealing with mixed IP problems. It would appear to follow directly from LP

that mixed IP shadow prices would be as reliable as LP shadow prices if the constraints right hand sides are

changed in a range that does not imply a change in the solution value of an integer variable. The dual

variables from the constraints which involve only continuous variables would appear to be most accurate.

Dual variables on constraints involving linkages between continuous and integer variable solution levels

would be less accurate and constraints which only involve integer variables would exhibit inaccurate dual

variables. This would be an interesting topic for research as we have not discovered it in the IP literature.

15-14copyright 1997 Bruce A. McCarl and Thomas H. Spreen

The third dual variable comment regards "binding" constraints. Consider Figure 15.1. Suppose that

the optimal solution occurs at X=3 and Y=3. Note that this point is strictly interior to the feasible region.

Consequently, according to the complementary slackness conditions of LP, the constraints would have zero

dual variables. On the other hand, if the first constraint was modified so that its right hand side was more

than 17, the solution value could move to X=4 and Y=3. Consequently, the first constraint is not strictly

binding but a relaxation of its right hand side can yield to an objective function increase. Therefore,

conceptually, it has a dual variable. Thus, the difficulty with dual variables in IP is that they may be nonzero

for nonbinding constraints.

15.4 Solution Approaches to Integer Programming Problems

 IP problems are notoriously difficult to solve. They can be solved by several very different

algorithms. Today, algorithm selection is an art as some algorithms work better on some problems. We will

briefly discuss algorithms, attempting to expose readers to their characteristics. Those who wish to gain a

deep understanding of IP algorithms should supplement this chapter with material from the literature (e.g.,

see Balinski or Bazaraa and Jarvis; Beale (1965,1977); Garfinkel and Nemhauser; Geoffrion and Marsten;

Hammer et al.; Hu; Plane and McMillan; Salkin (1975b); Taha (1975); von Randow; Zionts; Nemhauser;

and Woolsey). Consultation with experts, solution experimentation and a review of the literature on solution

codes may also be necessary when one wishes to solve an IP problem.

Let us develop a brief history of IP solution approaches. LP was invented in the late 1940's. Those

examining LP relatively quickly came to the realization that it would be desirable to solve problems which

had some integer variables (Dantzig, 1960). This led to algorithms for the solution of pure IP problems. The

first algorithms were cutting plane algorithms as developed by Dantzig, Fulkerson and Johnson (1954) and

Gomory (1958, 1960, 1963). Land and Doig subsequently introduced the branch and bound algorithm.

More recently, implicit enumeration (Balas), decomposition (Benders), lagrangian relaxation (Geoffrion,

15-15copyright 1997 Bruce A. McCarl and Thomas H. Spreen

1974) and heuristic (Zanakis and Evans) approaches have been used. Unfortunately, after 20 years of

experience involving literally thousands of studies (see Von Randow) none of the available algorithms have

been shown to perform satisfactorily for all IP problems. However, certain types of algorithms are good at

solving certain types of problems. Thus, a number of efforts have concentrated on algorithmic development

for specially structured IP problems. The most impressive recent developments involve exploitation of

problem structure. The section below briefly reviews historic approaches as well as the techniques and

successes of structural exploitation. Unfortunately, complete coverage of these topics is far beyond the scope

of this text. In fact, a single, comprehensive treatment also appears to be missing from the general IP

literature, so references will be made to treatments of each topic.

 There have been a wide variety of approaches to IP problems. The ones that we will cover below

include Rounding, Branch and Bound, Cutting Planes, Lagrangian Relaxation, Benders Decomposition, and

Heuristics. In addition we will explicitly deal with Structural Exploitation and a catchall other category.

15.4.1 Rounding

Rounding is the most naive approach to IP problem solution. The rounding approach involves the

solution of the problem as a LP problem followed by an attempt to round the solution to an integer one by: a)

dropping all the fractional parts; or b) searching out satisfactory solutions wherein the variable values are

adjusted to nearby larger or smaller integer values. Rounding is probably the most common approach to

solving IP problems. Most LP problems involve variables with fractional solution values which in reality are

integer (i.e., chairs produced, chickens cut up). Fractional terms in solutions do not make strict sense, but are

sometimes acceptable if rounding introduces a very small change in the value of the variable (i.e. rounding

1003421.1 to 1003421 or even 1003420 is probably acceptable).

 There is, however, a major difficulty with rounding. Consider the example

X1 7X2 22.5

X1 10X2 54

X1, X2 0 and integer

Maximize X1 X2

2X1 3X2 16

3X1 2X2 16

X1, X2 0 and integer

15-16copyright 1997 Bruce A. McCarl and Thomas H. Spreen

as graphed in Figure 15.2. In this problem rounding would produce a solution outside the feasible region.

In general, rounding is often practical, but it should be used with care. One should compare the

rounded and unrounded solutions to see whether after rounding: a) the constraints are adequately satisfied;

and b) whether the difference between the optimal LP and the post rounding objective function value is

reasonably small. If so IP is usually not cost effective and the rounded solution can be used. On the other

hand, if one finds the rounded objective function to be significantly altered or the constraints violated from a

pragmatic viewpoint, then a formal IP exercise needs to be undertaken.

15.4.2 Cutting Planes

The first formal IP algorithms involved the concept of cutting planes. Cutting planes remove part of

the feasible region without removing integer solution points. The basic idea behind a cutting plane is that the

optimal integer point is close to the optimal LP solution, but does not fall at the constraint intersection so

additional constraints need to be imposed. Consequently, constraints are added to force the noninteger LP

solution to be infeasible without eliminating any integer solutions. This is done by adding a constraint

forcing the nonbasic variables to be greater than a small nonzero value. Consider the following integer

program:

The optimal LP solution tableau is

X1 X2 S1 S2 b

obj 1.4 1 0 0

X1 1 0 .6 .4 3.2

X2 0 1 .4 .6 3.2

Zj Cj 0 0 .2 .2 6.4

15-17copyright 1997 Bruce A. McCarl and Thomas H. Spreen

which has X =X =3.2 which is noninteger. The simplest form of a cutting plane would be to require the sum1 2

of the nonbasic variables to be greater than or equal to the fractional part of one of the variables. In

particular, generating a cut from the row where X is basic allows a constraint to be added which required that1

0.6 S - .4 S 0.2. The cutting plane algorithm continually adds such constraints until an integer solution is1 2

obtained.

Much more refined cuts have been developed. The issue is how should the cut constraint be formed.

Methods for developing cuts appear in Gomory (1958, 1960, 1963).

Several points need to be made about cutting plane approaches. First, many cuts may be required to

obtain an integer solution. For example, Beale (1977) reports that a large number of cuts is often required (in

fact often more are required than can be afforded). Second, the first integer solution found is the optimal

solution. This solution is discovered after only enough cuts have been added to yield an integer solution.

Consequently, if the solution algorithm runs out of time or space the modeler is left without an acceptable

solution (this is often the case). Third, given comparative performance vis-a-vis other algorithms, cutting

plane approaches have faded in popularity (Beale,1977).

15.4.3 Branch and Bound

The second solution approach developed was the branch and bound algorithm. Branch and bound,

originally introduced by Land and Doig, pursues a divide-and-conquer strategy. The algorithm starts with a

LP solution and also imposes constraints to force the LP solution to become an integer solution much as do

cutting planes. However, branch and bound constraints are upper and lower bounds on variables. Given the

noninteger optimal solution for the example above (i.e., X = 3.2), the branch and bound algorithm would1

impose constraints requiring X to be at or below the adjacent integer values around 3.2; i.e., X 3 and X 1 1 1

Maximize 1.4X1 X2

2X1 3X2 16

3X1 2X2 16

X1 3

X1, X2 0

and

Maximize 1.4X1 X2

2X1 3X2 16

3X1 2X2 16

X1 4

X1, X2 0

15-18copyright 1997 Bruce A. McCarl and Thomas H. Spreen

4. This leads to two disjoint problems, i.e.,

The branch and bound solution procedure generates two problems (branches) after each LP solution.

Each problem excludes the unwanted noninteger solution, forming an increasingly more tightly constrained

LP problem. There are several decisions required. One must both decide which variable to branch upon and

which problem to solve (branch to follow). When one solves a particular problem, one may find an integer

solution. However, one cannot be sure it is optimal until all problems have been examined. Problems can be

examined implicitly or explicitly. Maximization problems will exhibit declining objective function values

whenever additional constraints are added. Consequently, given a feasible integer solution has been found,

then any solution, integer or not, with a smaller objective function value cannot be optimal, nor can further

branching on any problem below it yield a better solution than the incumbent (since the objective function

will only decline). Thus, the best integer solution found at any stage of the algorithm provides a bound

limiting the problems (branches) to be searched. The bound is continually updated as better integer solutions

are found.

 The problems generated at each stage differ from their parent problem only by the bounds on the

integer variables. Thus, a LP algorithm which can handle bound changes can easily carry out the branch and

bound calculations.

The branch and bound approach is the most commonly used general purpose IP solution algorithm

(Beale, 1977; Lawler and Wood). It is implemented in many codes (e.g., OSL, LAMPS, and LINDO)

including all of those interfaced with GAMS. However, its use can be expensive. The algorithm does yield

Maximize CX FY

s.t. AX GY b

DX HY e

X 0, Y 0 and integer,

Maximize CX FY (DH HY e)

s.t. AX GY b

X 0, Y 0 and integer,

15-19copyright 1997 Bruce A. McCarl and Thomas H. Spreen

intermediate solutions which are usable although not optimal. Often the branch and bound algorithm will

come up with near optimal solutions quickly but will then spend a lot of time verifying optimality. Shadow

prices from the algorithm can be misleading since they include shadow prices for the bounding constraints.

A specialized form of the branch and bound algorithm for zero-one programming was developed by

Balas. This algorithm is called implicit enumeration. This method has also been extended to the mixed

integer case as implemented in LINDO (Schrage, 1981b).

15.4.5 Lagrangian Relaxation

Lagrangian relaxation (Geoffrion (1974), Fisher (1981, 1985)) is another area of IP algorithmic

development. Lagrangian relaxation refers to a procedure in which some of the constraints are relaxed into

the objective function using an approach motivated by Lagrangian multipliers. The basic Lagrangian

Relaxation problem for the mixed integer program:

involves discovering a set of Lagrange multipliers for some constraints and relaxing that set of constraints

into the objective function. Given that we choose to relax the second set of constraints using lagrange

multipliers () the problem becomes

The main idea is to remove difficult constraints from the problem so the integer programs are much easier to

solve. IP problems with structures like that of the transportation problem can be directly solved with LP.

The trick then is to choose the right constraints to relax and to develop values for the lagrange multipliers ()k

Maximize FX CZ

s.t. GX b1

HX AZ b2

DZ b3

X is integer, Z 015-20copyright 1997 Bruce A. McCarl and Thomas H. Spreen

leading to the appropriate solution.

Lagrangian Relaxation has been used in two settings: 1) to improve the performance of bounds on

solutions; and 2) to develop solutions which can be adjusted directly or through heuristics so they are

feasible in the overall problem (Fisher (1981, 1985)). An important Lagrangian Relaxation result is that the

relaxed problem provides an upper bound on the solution to the unrelaxed problem at any stage. Lagrangian

Relaxation has been heavily used in branch and bound algorithms to derive upper bounds for a problem to see

whether further traversal down that branch is worthwhile.

Lagrangian Relaxation has been applied extensively. There have been studies of the travelling

salesman problem (Bazaraa and Goode), power generation systems (Muckstadt and Koenig); capacitated

location problem (Cornuejols, et al.); capacitated facility location problem (Geoffrion and McBride); and

generalized assignment problem (Ross and Soland). Fisher (1981,1985) and Shapiro (1979a) present survey

articles.

15.4.6 Benders Decomposition

Another algorithm for IP is called Benders Decomposition. This algorithm solves mixed integer

programs via structural exploitation. Benders developed the procedure, thereafter called Benders

Decomposition, which decomposes a mixed integer problem into two problems which are solved iteratively -

an integer master problem and a linear subproblem.

The success of the procedure involves the structure of the subproblem and the choice of the

subproblem. The procedure can work very poorly for certain structures. (e.g. see McCarl, 1982a or Bazarra,

Jarvis and Sherali.)

A decomposable mixed IP problem is:

Maximize CZ

s.t. AZ b2 HX ()

DZ b3 ()

Z 0

Maximize FX Q

X, , , Q

Q i(b2 HX) ib3 i 1, 2, ...p

GX b1

X integer

Q >
<

0

15-21copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Development of the decomposition of this problem proceeds by iteratively developing feasible points

X and solving the subproblem:*

Solution to this subproblem yields the dual variables in parentheses. In turn a "master" problem is formed as

follows

This problem contains the dual information from above and generates a new X value. The constraint

involving Q gives a prediction of the subproblem objective function arising from the dual variables from the

i previous guess at X. In turn, this problem produces a new and better guess at X. Each iteration adds ath

constraint to the master problem. The objective function consists of FX + Q, where Q is an approximation of

CZ. The master problem objective function therefore constitutes a monotonically nonincreasing upper bound

as the iterations proceed. The subproblem objective function (CZ) at any iteration plus FX can be regarded

as a lower bound. The lower bound does not increase monotonically. However, by choosing the larger of the

current candidate lower bound and the incumbent lower bound, a monotonic nondecreasing sequence of

15-22copyright 1997 Bruce A. McCarl and Thomas H. Spreen

bounds is formed. The upper and lower bounds then give a monotonically decreasing spread between the

bounds. The algorithm user may stop the solution process at an acceptably small bound spread. The last

solution which generated a lower bound is the solution which is within the bound spread of the optimal

solution. The form of the overall problem guarantees global optimality in most practical cases. Global

optimality will occur when all possible X's have been enumerated (either implicitly or explicitly). Thus,

Benders decomposition convergence occurs when the difference between the bounds is driven to zero. When

the problem is stopped with a tolerance, the objective function will be within the tolerance, but there is no

relationship giving distance between the variable solutions found and the true optimal solutions for the

variables. (i.e., the distance of Z* and X* from the true optimal Z's and X's). Convergence will occur in a

practical setting only if for every X a relevant set of dual variables is returned. This will only be the case if

the subproblem is bounded and has a feasible solution for each X that the master problem yields. This may

not be generally true; artificial variables may be needed.

However, the boundedness and feasibility of the subproblem says nothing about the rate of

convergence. A modest sized linear program will have many possible (thousands, millions) extreme point

solutions. The real art of utilizing Benders decomposition involves the recognition of appropriate problems

and/or problem structures which will converge rapidly. The general statements that can be made are:

1. The decomposition method does not work well when the X variables chosen by the master

problem do not yield a feasible subproblem. Thus, the more accurately the constraints in the

master problem portray the conditions of the subproblem, the faster will be convergence.

(See Geoffrion and Graves; Danok, McCarl and White (1978); Polito; Magnanti and Wong;

and Sherali for discussion.)

2. The tighter (more constrained) the feasible region of the master problem the better. (See

Magnanti and Wong; and Sherali.)

3. When possible, constraints should be entered in the master problem precluding feasible yet

15-23copyright 1997 Bruce A. McCarl and Thomas H. Spreen

unrealistic (suboptimal) solutions to the overall problem. (See the minimum machinery

constraints in Danok, McCarl and White, 1978.)

The most common reason to use Benders is to decompose large mixed integer problem into a small,

difficult master problem and a larger simple linear program. This allows the solution of the problem by two

pieces of software which individually would not be adequate for the overall problem but collectively are

sufficient for the resultant pieces. In addition, the decomposition may be used to isolate particular easy-to-

solve subproblem structures (see the isolation of transportation problems as in Geoffrion and Graves or

Hilger et al.). Finally, multiple levels of decomposition may be done in exploiting structure (see Polito).

15.4.7 Heuristics

Many IP problems are combinatorial and difficult to solve by nature. In fact, the study of NP

complete problems (Papadimitrou and Steiglitz) has shown extreme computational complexity for problems

such as the traveling salesman problem. Such computational difficulties have led to a large number of heur-

istics. These heuristics (following Zanakis and Evans) are used when: a) the quality of the data does not

merit the generation of exact optimal solutions; b) a simplified model has been used, and/or c) when a reliable

exact method is not available, computationally attractive, and/or affordable. Arguments for heuristics are also

presented regarding improving the performance of an optimizer where a heuristic may be used to save time in

a branch and bound code, or if the problem is repeatedly solved. Many IP heuristics have been developed,

some of which are specific to particular types of problems. For example, there have been a number of

traveling salesman problem heuristics as reviewed in Golden et al. Heuristics have been developed for

general 0-1 programming (Senju and Toyoda; Toyoda) and general IP (Glover; Kochenberger, McCarl, and

Wyman), as well as 0-1 polynomial problems (Granot). Zanakis and Evans review several heuristics, while

Wyman presents computational evidence on their performance. Generally, heuristics perform well on special

types of problems, quite often coming up with errors of smaller than two percent. Zanakis and Evans; and

Wyman both provide discussions of selections of heuristics vis-a-vis one another and optimizing methods.

15-24copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Heuristics also do not necessarily reveal the true optimal solution, and in any problem, one is uncertain as to

how far one is from the optimal solution although the Lagrangian Relaxation technique can make bounding

statements.

15.4.8 Structural Exploitation

Years of experience and thousands of papers on IP have indicated that general-purpose IP algorithms

do not work satisfactorily for all IP problems. The most promising developments in the last several years

have involved structural exploitation, where the particular structure of a problem has been used in the

development of the solution algorithm. Such approaches have been the crux of the development of a number

of heuristics, the Benders Decomposition approaches, Lagrangian Relaxation and a number of problem

reformulation approaches. Specialized branch and bound algorithms adapted to particular problems have

also been developed (Fuller, Randolph and Klingman; Glover et al. ,1978). The application of such

algorithms has often led to spectacular results, with problems with thousands of variables being solved in

seconds of computer time (e.g., see the computational reports in Geoffrion and Graves; Zanakis; and the

references in Fisher, 1985). The main mechanisms for structural exploitation are to develop an algorithm

especially tuned to a particular problem or, more generally, to transform a problem into a simpler problem to

solve.

15.4.9 Other Solution Algorithms and Computer Algorithms

The above characterization of solution algorithms is not exhaustive. A field as vast as IP has

spawned many other types of algorithms and algorithmic approaches. The interested reader should consult

the literature reviews in von Randow; Geoffrion (1976); Balinski; Garfinkel and Nemhauser; Greenberg

(1971); Woolsey; Shapiro (1979a, 1979b); and Cooper as well as those in textbooks.

15.5 The Quest for Global Optimality: Non-Convexity

Most of the IP solution material, as presented above, showed the IP algorithms as involving some

15-25copyright 1997 Bruce A. McCarl and Thomas H. Spreen

sort of an iterative search over the feasible solution region. All possible solutions had to be either explicitly

or implicitly enumerated. The basic idea behind most IP algorithms is to search out the solutions. The search

process involves implicit or explicit enumeration of every possible solution. The implicit enumeration is done

by limiting the search based on optimality criterion (i.e., that solutions will not be examined with worse

objective functions than those which have been found). The enumeration concept arises because of the

nonconvex nature of the constraint set; in fact, in IP it is possible to have a disjoint constraint set. For

example, one could implement an IP problem with a feasible region requiring X to be either greater than 4 or

less than 5. Thus, it is important to note that IP algorithms can guarantee global optimality only through an

enumerative search. Many of the algorithms also have provisions where they stop depending on tolerances.

These particular algorithms will only be accurate within the tolerance factor specified and may not reveal the

true optimal solution.

15.6 Formulation Tricks for Integer Programming - Add More Constraints

IP problems, as alluded to above, involve enumerative searches of the feasible region in an effort to

find the optimal IP solutions. Termination of a direction of search occurs for one of three reasons: 1) a

solution is found; 2) the objective function is found to go below some certain value, or 3) the direction is

found to possess no feasible integer solutions. This section argues that this process is speeded up when the

modeler imposes as many reasonable constraints as possible for defining the feasible and optimal region.

Reasonable means that these constraints are not redundant, each uniquely helping define and reduce the size

of the feasible solution space.

LP algorithms are sensitive to the number of constraints. Modelers often omit or eliminate

constraints when it appears the economic actions within the model will make these constraints unnecessary.

However, in IP, it is often desirable to introduce constraints which, while appearing unnecessary, can greatly

decrease solution time. In order to clarify this argument, three cases are cited from our experiences with the

Y1 Y2 Md 0

15-26copyright 1997 Bruce A. McCarl and Thomas H. Spreen

solution of IP models.

In the first example, drawn from Danok's masters thesis (1976), Danok was solving a mixed IP

problem of machinery selection. The problem was solved using Benders decomposition, in which the integer

program for machinery selection was solved iteratively in association with a LP problem for machinery use.

Danok solved two versions. In the first, the machinery items were largely unconstrained. In the second,

Danok utilized the amount of machinery bought in the LP solution as a guide in imposing constraints on the

maximum and minimum amount of types of machinery. Danok constrained the solution so that no more than

50 percent more machinery could be purchased than that utilized in the optimal LP solution (i.e., ignoring the

integer restrictions). The solution time reduction between the formulations were dramatic. The model with

the extra constraints solved in less than 10 percent of the computer time. However, the solutions were

identical and far away from the LP derived constraints. Thus, these constraints greatly reduced the number of

solutions which needed to be searched through, permitting great efficiencies in the solution process. In fact,

on the larger Danok problem, the amount of computer time involved was considerable (over 1,000 seconds

per run) and these constraints allowed completion of the research project.

The second example arose in Polito's Ph.D. thesis. Polito was solving a warehouse location type

problem and solved two versions of the problem (again with Benders decomposition). In the first version,

constraints were not imposed between the total capacity of the plants constructed and the demand. In the

second problem, the capacity of the plants located were required to be greater than or equal to the existing

demand. In the first problem, the algorithm solved in more than 350 iterations; in the second problem only

eight iterations were required.

The third example arises in Williams (1978a or 1978b) wherein constraints like

including the indicator variable d, are replaced with

Y1 Md 0

Y2 Md 0

15-27copyright 1997 Bruce A. McCarl and Thomas H. Spreen

which has more constraints. The resultant solution took only 10 percent of the solution time.

In all cases the imposition of seemingly obvious constraints, led to great efficiencies in solution time.

Thus, the integer programmer should use constraints to tightly define the feasible region. This eliminates

possible solutions from the enumeration process.

15.7 IP Solutions and GAMS

The solution of integer programs with GAMS is achieved basically by introducing a new class of

variable declaration statements and by invoking an IP solver. The declaration statement identifies selected

variables to either be BINARY (zero one) or INTEGER. In turn, the model is solved by utilizing a solved

statement which says "USING MIP". Table 1 shows an example formulation and Table 2 the GAMS input

string. This will cause GAMS to use the available integer solvers. Currently the code ZOOM is distributed

with the student version, but we do not recommend ZOOM for practical integer programming problems.

Those wishing to solve meaningful problems should use OSL, LAMPS, XA, CPLEX or one of the other

integer solvers.

15-28copyright 1997 Bruce A. McCarl and Thomas H. Spreen

References

Balas, E. "An Additive Algorithm for Solving Linear Programs with Zero-One Variables." Operations
Research 13(1965):517-546.

Balinski, M.L. "Integer Programming Methods, Uses, Computation." Management Science . 12:253-313.

Bazaraa, M.S. and J.J. Goode. "The Traveling Salesman Problem: A Duality Approach". Mathematical
Programming . 13(1977):221-237.

Bazaraa, M.S. and J. Jarvis. Linear Programming and Network Flows . John Wiley & Sons, 1977.

Beale, E.M.L. "Survey of Integer Programming." Operation Research Quarterly 16:2(1965):219-228.

________. "Integer Programming," in D. Jacobs (ed.) The State of the Art in Numerical Analysis . Academic
Press, New York, NY, 1977.

Benders, J.F. "Partitioning Procedures for Solving Mixed-Variables Programming Problems." Numerical
Methods. 4(1962):239-252.

Cooper, M.W. "A Survey of Methods for Pure Nonlinear Integer Programming." Management Science .
27(1981):353-361.

Cornuejols, G., M.L. Fisher, and G.L. Nemhauser. "Location of Bank Accounts to Optimize Float: Analytic
Study of Exact and Approximate Algorithms." Management Science . 23(1977):789-810.

Danok, A.B. "Machinery Selection and Resource Allocation on a State Farm in Iraq." M.S. thesis, Dept. of
Agricultural Economics, Purdue University, 1976.

Danok, A.B., B.A. McCarl, and T.K. White. "Machinery Selection and Crop Planning on a State Farm in
Iraq." American Journal of Agricultural Economics . 60(1978):544-549.

________. "Machinery Selection Modeling: Incorporation of Weather Variability." American Journal of
Agricultural Economics . 62(1980):700-708.

Dantzig, G.B. "Discrete Variable Extremum Problems." Operations Research . 5(1957):266-277.

________. "Notes on Solving Linear Programs in Integers." Naval Research Logistics Quarterly .
6(1959):75-76.

________. "On the Significance of Solving Linear Programming Problems with Some Integer Variables."
Econometrica 28(1960):30-44.

________. Linear Programming and Extensions . Princeton University Press. Princeton, New Jersey, 1963.

Dantzig, G.B., D.R. Fulkerson, and S.M. Johnson. "Solution of a Large Scale Traveling Salesman Problem".
Operations Research . 2(1954):393-410.

15-29copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Driebeck, N.J. "An Algorithm for the Solution of Mixed Integer Programming Problems." Management
Science. 12(1966):576-587.

Fisher, M.L. "Worst Case Analysis of Heuristic Algorithms." Management Science . 26(1980):1-17.

________. "The Lagrangian Relaxation Method for Solving Integer Programming Problems." Management
Science 27(1981):1-18.

________. "An Applications Oriented Guide to Lagrangian Relaxation." Interfaces (forthcoming), 1985.

Fisher, M.L., A.J. Greenfield, R. Jaikumar, and J.T. Lester III. "A Computerized Vehicle Routing
Application." Interfaces 12(1982):42-52.

Fuller, W.W., P. Randolph, and D. Klingman. "Optimizing Subindustry Marketing Organizations: A
Network Analysis Approach." American Journal of Agricultural Economics . 58(1976):425-436.

Garfinkel, R.S. and G.L. Nemhauser. Integer Programming . New York: John Wiley and Sons, 1972.

Geoffrion, A.M. "Integer Programming by Implicit Enumeration and Balas' Method." SIAM Review of
Applied Mathematics . 9(1969):178-190.

________. "Generalized Benders Decomposition." Journal of Optimization Theory and Application ,
10(1972):237-260.

________. "Lagrangian Relaxation and its Uses in Integer Programming." Mathematical Programming
Study, 2(1974):82-114.

________. "A Guided Tour of Recent Practical Advances in Integer Linear Programming." Omega
4(1976):49-57.

Geoffrion, A.M. and G.W. Graves. "Multicommodity Distribution System Design by Bender's
Decomposition." Management Science . 23(1977):453-466.

Geoffrion, A.M. and R.E. Marsten. "Integer Programming: A Framework and State-of-the-Art Survey."
Management Science . 18(1972):465-491.

Geoffrion, A.M. and R. McBride. "Lagrangian Relaxation Applied to Capacitated Facility Location
Problems." American Institute of Industrial Engineers Transactions . 10(1978):40-47.

Glover, F. Heuristics for Integer Programming Using Surrogate Constraints." Decision Sciences
8(1977):156-166.

Glover, F., J. Hultz, D. Klingman and J. Stutz. "Generalized Networks: A Fundamental Computer-Based
Planning Tool." Management Science . 24(1978):1209-20.

Golden, B., L. Bodin, T. Doyle and W. Stewart. "Approximate Traveling Salesman Algorithms." Operations
Research. 28(1980):694-711.

15-30copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Gomory, R.E. "Outline of an Algorithm for Integer Solutions to Linear Programs." Bulletin of the American
Mathematics Society . 64(1958):275-278.

__________. "Solving Linear Programming Problems in Integers." 10th Proceedings, Symposium on
Applied Mathematics sponsored by the American Mathematics Society . (R.B. Bellman and M. Hall,
Jr., eds.), 1960:211-216.

__________. 1963. "An Algorithm for Integer Solutions to Linear Programs." In Recent Advances in
Mathematical Programming . (R.L. Graves and P. Wolfe, eds.). McGraw-Hill, New York,
1963:269,302.

Gomory, R.E. and W.J. Baumol. "Integer Programming and Pricing." Econometrica 28(1960):521-550.

Granot, F. "Efficient Heuristick Algorithms for Postive 0-1 Polynomial Programming Problems."
Management Science . 28(1982):829-836.

Graves, S.C. "Using Lagrangian Techniques to Solve Hierarchical Production Planning Problems."
Management Science 28(1982):260-275.

Greenberg,H. Integer Programming .Academic Press, Inc., New York, 1971.

Hammer, P.L., et al. 1977. Studies in Integer Programming . North Holland, Inc., New York, 1977.

Hilger, D.A., B.A. McCarl, and J.W. Uhrig. "Facilities Location: The Case of Grain Subterminals."
American Journal of Agricultural Economics 59(1977):674-682.

Hu, T.C. Integer Programming and Network Flows . Addison-Wesley Publishing Company, Reading, MA.
1969.

Kochenberger, G.A., B.A. McCarl, and F.P. Wyman. "A Heuristic for General Integer Programming."
Decision Sciences . 5(1974):36-44.

Land, A.H. and A.G. Doig. "An Automatic Method for Solving Discrete Programming Problems."
Econometrica 28(1960):497-520.

Lawler, E.L. and D.E. Wood. "Branch and Bound Methods: A Survey." Operations Research 1966:669-719.

Magnanti, T.L. and R.T. Wong. "Accelerating Benders Decomposition: Algorithmic Enhancements and
Model Selection Criteria." Operations Research , 29(1981):464-484.

Markowitz, H.M. and A. Manne. "On the Solution of Discrete Programming Problems." Econometrica .
25(1975):84-110.

McCarl, B.A. 1982. Benders Decomposition . Purdue University Agricultural Experiment Station Bulletin
361, 1982.

Papadimitrou, C.H. and K. Steiglitz. Combinatorial Optimization : Algorithms and Complexity .

15-31copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Prentice-Hall, Englewood Cliffs, NJ, 1982.

Plane, D.R. and C. McMillan, Jr. Discrete Optimization--Integer Programming and Network Analysis for
Management Decisions . Prentice-Hall, Inc., Englewood Cliffs, NJ:1971.

Polito, J. "Distribution Systems Planning in a Price Responsive Environment." Unpublished Ph.D.
Dissertation, Purdue Univ. West Lafayette, Ind. 1977.

Ross, G.T. and R.M. Soland. "A Branch and Bound Algorithm for the Generalized Assignment Problem."
Mathematical Programming . 8(1975):91-103.

Salkin,H. "The Knapsack Problem." Naval Research Logistics Quarterly . 22(1975):127-155

_________. Integer Programming . Addison-Wesley, Reading, Mass, 1975.

Schrage,L.E. Linear Programming Models with Lindo .The Scientific Press, Palo Alto, Ca, 1981.

Senju,S.and Y. Toyoda. "An Approach to Linear Programming with 0-1 Variables." Management Science .
15(1968):B196-B207.

Shapiro,J.F. "A Survey of Lagrangian Techniques for Discrete Optimization." Annals of Discrete
Mathematics . 5(1979a):113-38.

_____________. Mathematical Programming: Structure and Algorithms . John Wiley & Sons. New York,
1979b.

Sherali, H. "Expedients for Solving Some Specially Structured Mixed- Integer Programs." Naval Research
Logistics Quarterly . 28(1981):447-62.

Taha, H.A. Integer Programming - Theory, Applications, and Computations Academic Press, New York,
1975.

Tonge, F.M. "The Use of Heuristic Programming In Management Science." Management Science .
7(1961):231-37.

Toyoda, S. "A Simplified Algorithm for Obtaining Approximate Solutions to 0-1 Programming Problems."
Management Science . 21(1975):1417-27.

von Randow, R. Integer Programming and Related Areas - A Classified Bibliography . 1978-1981.
Springer-Verlag, New York, 1982.

Williams, H.P. 1974. "Experiments in the Formulation Of Integer Programming Problems." Mathematical
Programming Study . 2(1974).

_____________. "Logical Problems and Integer Programming." Bulletin of the Institute of Applied
Mathematics . 13(1977).

15-32copyright 1997 Bruce A. McCarl and Thomas H. Spreen

_____________. Model Building in Mathematical Programming . New York: John Wiley & Sons, 1978a.

_____________. "The Reformulation of Two Mixed Integer Programming Models." Mathematical
Programming . 14(1978b):325-31.

_____________. "The Economic Interpretation of Duality for Practical Mixed Integer Programming
Problems." Survey of Math Programming Society . 2(1980):567-90.

Woolsey, R.E.D. "How to Do Integer Programming in the Real World." in Integer Programming , H.M.
Salkin, (ed.), Addison-Wesley, Chapter 13, 1975.

Wyman, F.P. "Binary Programming: A Decision Rule for Selecting Optimal vs. Heuristic Techniques." The
Computer Journal . 16(1973):135-40.

Zanakis, S.H. "Heuristic 0-1 Linear Programming: An Experimental Comparison of Three Methods."
Management Science . 24(1977):91-104.

Zanakis, S.H. and J.R. Evans. "Heuristic Optimization: Why, When and How to Use it." Interfaces .
11(1981):84-90.

Zionts, S. Linear and Integer Programming . Prentice Hall, Englewood Cliffs, NJ, 1973.

15-33copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Table 15.1.

Maximize 7X -3X -10X 1 2 3

X -2X 01 2

X -20X 01 3

X 0 X 0 integer X 0,11 2 3

Table 15.2. GAMS Input for Example Integer Program

 5 POSITIVE VARIABLE X1
 6 INTEGER VARIABLE X2
 7 BINARY VARIABLE X3
 8 VARIABLE OBJ
 9
 10 EQUATIONS OBJF
 11 X1X2
 12 X1X3;
 13
 14 OBJF.. 7*X1-3*X2-10*X3 =E= OBJ;
 15 X1X2.. X1-2*X2 =L=0;
 16 X1X3.. X1-20*X3 =L=0;
 17
 18 MODEL IPTEST /ALL/;
 19 SOLVE IPTEST USING MIP MAXIMIZING OBJ;

Figure 15.1 Graph of Feasible Integer Points for First LP Problem

2

4

6

8

10

X-Axis

Y
-A

xi
s

0 2 4 6 8 10
0

15-34copyright 1997 Bruce A. McCarl and Thomas H. Spreen

X1

Figure 15.2 Graph of Feasible Integer Points for Second Integer Problem

0 2 4 6 8 10
0

2

4

6

8

10

X
2

15-35copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Figure 15.3 Mixed Integer Feasible Region

0 2 4 6 8 10
0

2

4

6

8

10

X2

X
1

15-36copyright 1997 Bruce A. McCarl and Thomas H. Spreen

15-37copyright 1997 Bruce A. McCarl and Thomas H. Spreen

