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CHAPTER XI: MULTI-OBJECTIVE PROGRAMMING

Optimization of asingle objective oversamplifies the pertinent abjective function in some potentia
mathematical programming application situations. Arguments can aso be made following Simon that
optimization is not as appropriate as statisficing. These two statements introduce the general topic of
multiobjective programming. Multiobjective programming formally permits formulationswhere: @)
solutions are generated which are as consistent as possible with target levels of goals; b) solutions are
identified which represent maximum utility across multiple objectives; or ¢) solution sets are devel oped which
contain al nondominated solutions. Multiple objectives can involve such considerations asleisure,
decreasing marginal utility of income, risk avoidance, preferences for hired labor, and satisfaction of
desirable, but not obligatory, constraints.

A discussion of thisarearequires some definitions. An - objective isameasure that one is concerned
about when making a choice among the decision variables (something to be maximized, minimized or
satisfied like leisure, risk, profits, etc.). A goa impliesthat aparticular goa target value has been chosen for
an objective.

Wewill use" multiple objective programming" to refer to any mathematical program involving more

than one objective regardless of whether there are goal target levelsinvolved. Note, the literature contains
conflicting definitions (see Blake and McCarl; Ignizio [1978,1983]; Romero [1989, 1991]). For example: a)
goa programming has been used to refer to multiple objective problems with target levels; b) multiobjective
programming has been used to refer to only the class of problems with weighted or unweighted multiple
objectives; ) vector maximization has been used to refer to problemsin which avector of multiple objectives
are to be optimized; and d) risk programming has been used to refer to multiobjective problems in which the
objectives involve income and risk.

Multiobjective programming involves recognition that the decision maker is responding to multiple

objectives. Generaly, objectives are conflicting, so that not al objectives can smultaneoudly arrive at their
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optimal levels. Anassumed utility function is used to choose appropriate solutions. Several fundamentally
different utility function forms have been used in multiobjective models. These may be divided into three
classes: lexicographic, multi-attribute utility and unknown utility.

The lexicographic utility function specification assumes the decision maker has adtrictly ordered

preemptive preference system among objectives with fixed target levels. For example, alexicographic system
could haveitsfirst priority goal asincome of not less than $10,000; the second priority asleisure of no less
than 20 hours aweek; the third as income of no less than $12,000, etc. Thisformulation istypical of "goa
programming models." (Charnesand Cooper (1961); Leg). The various goas are dedt with in strict
sequential order - higher god's before lower order goals. Once agoal has been dealt with (meeting or failing
to meet the target leve), its satisfaction remains fixed and the next lower order goal is considered.
Consideration of the lower level goals does not ater the satisfaction of higher level goa's and cannot damage
the higher level goals with respect to target leve attainment.

Multi-attribute utility approaches alow tradeoffs between objectivesin the attainment of maximum

utility. The most common form involves maximization of the sum of linearly weighted objectives. Thistype of
formulation has been used by Candler and Boeljhe; and Barnett, Blake and McCarl.

The third utility approach involvesan unknown utility function assumption. Here the entire Pareto

efficient (nondominated) solution st is generated so that every solution is reported wherein one of the multiple
objectivesisas satisfied asit possibly can be without making some other objective worse off (Steur, Geoffrion

(1968)).

11.1 Formulations
All of the above utility functions can be expressed in terms of the following problem. Assumethere are
multiple objectives which are given by

GX
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wherethere are Jdecision variables (X) and R objectives. Thus, the matrix G is of dimension R by Jwhile X
isJby 1. These abjectives can also be expressed in summation notation as
X g X for dl r
When target levels are added, the objecti vesjbecome
GX>T
The general goal programming problem, then, isasfollows:

Sdlect X so that we

optimize or achieve GX

st. AX < Db

Possibly subject to GX > T
X >0

Here the normal LP objective function is replaced by amore general function which permits use of different
utility function forms (it is difficult to write the Pareto utility function in thisform). The problem involves
selection of the X's. The sdlection is driven by either optimization of some weighted tradeoff of objectives or
through lexicographic achievement of various goal target levels. The specific formulations used for each of
the above utility function specifications are given below.
11.1.1 L exicographic Utility - Target Values

Perhaps the first application of multiobjective programming was the Charnes and Cooper goal

programming formulation. The formulationis. Select X so that

AX < b
X >0
and so that the goals are handled in the following priority order:
Lg% > T,
j
then
g% > T,
j
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on through to
Xj: 9%, > Tg
for the R™ and last goal.

The lexicographic multiple objective formulation is not precisdly aLP problem. It has many
structural characteristics in common with a L P problem; however, a conventional objective function is not
defined, nor can asingle LP formulation reflect imposition of the sequentia ordering of the goals. Rather, an
iterative procedureis needed (Lee). Essentially, the approach isto solve problemsfor each of the gods

sequentially. When considering thei " goal solve the problem

Min w,

[\
—

for dl r

r

st. w + Zg”.xj
j

A

Y a,;X; < b for al m
i

W, o< ow, for dl r <'i
W, < o for dl r > i
X > 0 for dl |
wo> 0 for dl r

The new variablew , gives the amount that the goal level ( EgrjX j ) islessthan the target value (T ). Wheni =
1 the problem minimizes the shortfall from thefirst goa target level, subject to the LP congtraints. One of

two solution situations will then occur. Either the optimum value of w ; (denoted w™,) equals 0, indicating full
satisfaction of thefirst god, orw *; = O, indicating the goal cannot be fully satisfied. Subsequently, a second
problemissolved. Thisproblemisvirtualy identical to thefirst, except w , isminimized and a congtraint is
appended indicating that w , cannot be any worse than the optimum value obtained at the end of the solution

of thefirst stage (w ;). Thisrequires: 1) if god 1 was met before, then goal 1 will continueto bemet (i.e,w
must be lessthan or equa to zero); or 2) if goal 1 was not met, then the deviation from goa 1 will not get

bigger than the minimum deviation obtained at the previous iteration. Thus, the prior objective is constrained
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to be no worse off than it was before. This problem, in effect, explores aternative optimums where we hold
the prior objectives at their optimum values, then try to optimize the satisfaction of the subsequent objectives.
This procedure is executed for al R goals where different deviation variables are minimized at each
stage and a constraint is added holding all previous deviations to maximum values prohibiting the earlier
objectives from becoming worse off. Lee presents a more comprehensive discussion of the procedure while
the example below gives an empirical application.
11.1.2 Utility Tradeoff M ode
The second utility function type involves tradeoffs between various objectives. Such problems can
be formulated as conventional linear programs. There have been two alternative formulations of this
problem. They differ in their assumptions about target levels. The first formulation (appearing for example
in Candler and Boedljhe) does not take into account target levels, maximizing the weighted sum of the

guantities of each objective. Thisis

Max X c.q,
r
—_Z g9;X; + 6 = 0 for al r
J
Y q,X, < b, for dl m
J
X, g > 0 for dl j and r

where ¢, isthe weight which expresses the importance of ther ™ objective in the context of the decision
maker'stotal utility. Thec , coefficientswould bein utility units per unit of ther ™ objective achieved; q , isthe
amount of r™ objective in the optimal solution and may often be multiplied by a magnitude normaizing
factor.

The objective function, maximizes multi-dimensional utility summed across al objectives. Each
objectiveisweighted. The second equation sumsthe level of each objectiveinto thevariableq . Thethird

represents resource availability limitations, and the fourth expresses nonnegativity congtraints.
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The second welghted tradeoff formulation embodies goal target levels. Theformulationis

Max Yc'g + Xcq
r r
st. X g, X - q -+ q =T, for dl r
]
Y a4, X, < b, for al m
]
X, q g > O for dl j and r

j
where T, isthe god target value for objectiver, ¢ ,* isthe weight attached to overachieving objectiver relative
toitstarget, c,” isthe weight attached to underachieving objectiver rlaivetoitstarget, q ,* isthe amount the
target for objectiver isoverachieved, and q | isthe amount the target for objectiver is underachieved.
Thisisagain alinear program. The formulation is adapted from Lee and isused in Barnett, et .
(1982).
11.1.3 Unknown Utility Function
The other approach to multiobjective programming involves an unknown utility function assumption.
Instead, the entire nondominated set of aternativesis generated. The formulation for this approach is exactly
like the first one under the weighted tradeoff section above except that al possible weights are utilized in the
problem. This particular approach has been studied extensively, (see, for example, the bibliographiesin

Steuer; and Ignizio, 1983) but does not appear to be very empiricaly useful.

11.2 Examples
A common example is used to demonstrate the above formulations. However, we will omit coverage
of the unknown utility function model asits solutions would be rather extensive and its use has been limited.
The example builds upon the chair example used in the resource alocation section of the linear
programming chapter. Supposethat the firm isinterested in profit, idle labor, and idle lathe timein

formulating its goals. Thus, the firm valuesleisure and dack lathe time as well as profits.
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11.2.1 Lexicographic Formulation

The lexicographic formulation will be based on four different goals. Thefirst god isthat the profit
be greater than $9,000, the second that idle labor be greater than or equal to 30 hours. Thethird isthat idle
lathe time be greater than or equal to 25 hours and the fourth, that profit be greater than or equal to $9,500.
The formulation of this problem with the deviation variablesincluded is given in Table 11.1 where p gives
the profit, S,, S,, and S, theidle lathe and labor time, and d , through d,, the god deviations.

The approach in solving this problem isas above. First, the deviation from the $9,000 profit target
leve will be minimized. Thisresultsin adeviation of zero. Subsequently, when minimizing the deviation
from theidle labor goal, a constraint is entered alowing zero deviation from a profit level of $9,000. Then
we precede to consider idle lathe time holding the profits and idle labor goa achievement constant.

The GAMS implementation isgiven in Table 11.2 and file LEXICO. We have introduced profit
accounting in line 67 through 69. Also, we have introduced slack variables accounting for idle resources
(lines 71-73). The four goals are moddled in lines 75 through 79 where the idle large and smdll lathetimeis
added and st equal to the goal leved inline 79. Inturn, line 80 relates the goal levelsto their associated
targets. Namely, the goa achievement level plus a deviation variable to make up the shortfall is sat greater
than or equal to thetarget. The congtraints defined in line 82 then restrict the goal shortfall to be lessthan or
equal to an acceptable deviation level.

The lexicographic approach isimplemented in lines 85 through 96. Theinitia allowable deviations
are set to alarge number in line 30. Theloop from lines 86 through 95 sets up the problem for each goal
changing the objective function weights then solves. Subsequently, the maximum alowed deviation for
futureiterationsis set equal to the shortfall. Report writing statements (lines 92-94) summarize the solution.

The solutions are presented in Table 11.3. Four solutions are involved, each arising when the gods
areindividualy considered. In thefirst solution, the $9,000 profit goal is easily attained while the labor and
lathe time goals fall short with 4.024 units of idle labor and 17.073 units of idle lathetime. Thisplan has

12.195 units of functional normal chairs being produced and 108.337 units of fancy normal chairs.
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In turn, when the idle labor problem is setup with the profit deviation restricted (d  , < 0), the solution
exhibits profits of $9,482 full attainment of the idle labor goa but the lathe goal is now 20.641 units short
and we are $18.421 short of the $9,500 profit god. Thisisachieved with production of 115.296 fancy chairs
and 3.289 fancy chairs with maximum large lathe use.

Now turning to theidle lathe time problem, we congtraind ; < 0 and d, < 0 then solve. Herewe fully
attain the $9,000 profit and idle labor goals but fall 4.337 units short of theidlelathetime goa. Profit isnow
$9,000. Thisplanisachieved by producing 15.152 units of functional normal chairs and 99.811 units of
fancy normal chairs.

Findly, turning our attention to the last goal we find that we can not make any progress on it and
have a solution which is equivalent to the solution in the step before.

The above results show the action of alexicographic solution. Namely, the $9,000 profit goal was
satisfied and held satisfied throughout the process while the $9,500 profit was not considered until the last
step and the $9,500 profit goal was only pursued when the other goals had been held at their satisfaction
levels and as a consequence no progress could be made.

11.2.2 Weighted Tradeoff - No Targets

One version of the weighted tradeoff formulation does not contain targets. Wewill follow the
theoretical formulation but will also include weights and normalizing factors. The normalizing factors are
used so the goa magnitudes are approximately equal. Namely, we divide the profit goa through by 10,500,
the labor goal by the labor resource availability and the total lathe god by the lathe resource availability.
Thisthen will convert dl of these goal numbers that range over 0 to 1 and allow relative weights to be used.
In turn, the weight for profit equals one, while the weight for idle labor and lathe time both equal 0.4. The
resultant formulation isin Table 11.4 and the GAMSingtructionsin Table 11.5 (file WEIGHT). Noticein
the GAMS formulation the weight and normalization data are defined in lines 23-27, whilethe goal setupis
essentialy the same as in the previous example. The main variant isthat the goa levelsare normalized in

lines 67-69 and the objective function is the sum of the goal weightstimesthe goal levels (line 57).
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The resultant solution to this problem isthat 2.44 functional normal chairs are made while 112.2
fancy normal chairs are made and 6.829 fancy chairs with maximum use of thelarge lathe. The profit godl is
achieved at a.92 level of the 10,500 normdization level ($9,674) while the labor goal isachieved at a0.217
level leaving 27.06 hours of labor idle. Theidle lathe time variable equals 0.

11.2.3 Weighted Objectiveand Targets

Findly, let us consider the unified target levels and weighted tradeoff formulation. Here we will use
the same target levels as in the lexicographic modd, but introduce weights where we value profit at aweight
of oneif it ismorethan the first goa and at -10 unitsif it islessthan that. Idlelabor and lathe time are
weighted at 0.1 if they are greater than their target level and -0.4 if less. Finaly, the profit in excess of
$9,500 isvalued at .9 and lessthan that at -1. The goals are normalized by multiplying the deviation
variables by thetarget value. Thisformulation is portrayed in Table 11.6 with the GAMS ingtructionsin
Table11.7 (seefile WTTAR). Noticein thisformulation both positive and negative deviations are defined
and the objective function both reflects shortfalls and excesses. The solution shows profit equals $9,000, idle
labor 25.08 units, and idle lathe time 25 units. This makesfor alabor shortfal of .164 units and a profit

shortfall of .05.

11.3 Choice Among Formulations

An important question given the dternative formulationsis. which one should be used for a
problem? There are several general considerations involved in choosing among these formulations.

Thefirst consideration is solver availability. Traditionally, the undominated approach requires a
specially adapted solver. Such adaptations have been implemented (Steuer) although they are not routindy
available for more than small problems. In addition, the undominated set approach can be quite expensive
computationally (Steuer). Thus, this criteriafavors the weighted tradeoff or goal formulations where one
could use standard algorithms.

Second, one needs to consider the required amount of decision maker contact, particularly if the
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model isbeing used for predictive purposes. The undominated solution aternative would not be satisfactory
inalimited contact setting as it requires active choice of the "best" strategy by the decision maker. This
would be particularly troubling in many predictive exercises as the methods would generate alarge number of
answers, any of which could be the solution depending on decision maker choice.

Third, the treatment of goal target levelsisdifficult in comparative static exercises. Itisdifficult to:
1) specify goal target levels and 2) conclude that the godl target levels do not depend upon the resource base.
Certainly, anincome goal is easier to satisfy if the resource baseis augmented. Thus, the lexicographic utility
function formulations are not scale neutra. Many LP models are built to do comparative static studies, such
as what would happen if larger equipment were available, more land area, labor, etc. This causes difficulties
in using comparétive statics with the weighted tradeoff model using fixed god target levels or the
lexicographic modd.

Fourth, weights are difficult to discover. A complex questioning or calculation procedureis required
(we review procedures for establishing weights below). Further, the use of constant weights over the entire
domain of goal levels may be questionable. Procedures for including diminishing marginal utility would
involve quadratic or separable programs as covered in other chapters.

All things considered, we prefer the weighted tradeoff model due to its consistency with our
perceptions that individuals are willing to establish tradeoffs between objectives on the margin and that most

modelswill be used for comparative static anaysis.

11.4 Developing Utility Functions
Conceptualy, multiobjective programming problems look attractive. However, assuming one knows
the objectives, it is difficult to specify the utility structure. Clearly, thisis not a problem with the
undominated solution procedure as there are no weights. On the other hand, one puts al the dternative
solutionsin the decision maker's lap, which could involve thousands of solutions. Here we address how to

find the utility function for the other formulations.
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The easiest system to use is the lexicographic system, where one has to establish goal targets and the
preemptive order. Targets such as the minimum amount of debt service plus consumption or the desired
length of avacation can be used. However, one must be careful in using these targetsin comparative static
analysis, astherdative ability to satisfy the targets changes with aterations in the resource base. Also, one
must ask whether tradeoffs are in order.

Weights are more difficult and are the subject of the bulk of the discussion herein. Thefirst way of
specifying weights is to take decision makers past actions and then through a grid search over dternative
weights, choose weights so as to minimize deviations of the mode solution from observed actions. An
exampleisgiven by Brink and McCarl for arisk analysis problem. We know of no formal attempt to do this
in other than arisk analysis framework. The advantage hereisthat one obtains weights which are somehow
consistent with revedled preferences. However, in aLP problem thereisarange of weightswhich will
generate the same solution. It is therefore possible that the proper set of weights is somewhere within the
range, but that the wrong set of weightsis chosen. In turn, this set of weights could lead to dramatically
different behavior in a comparative static study.

A third procedure involves survey techniques. Here decision makers are asked questions about the
relative importance of objectives and then through a scaling procedure a set of objective weights is obtained.
Thiswas done by Barnett, Blake and McCarl; Smith and Capstick; and Harman, et . Two difficulties arise
with this procedure. Firgt, thereis no assurance that the surveys generate results which mimic actionsin
actud situations. Second, it is difficult to trandate the results into the proper specification of the
programming model objective.

The fourth procedure we discuss was proposed by Candler and Boehlje and applies to the weighted
tradeoff moddls. The procedure involves interaction with the decision maker and is based on reveded
preference. To begin the process, modelers choose an initia set of weights and present the answersto the
decision maker. Inturn, the decision maker expresses preference for a change in the objective satisfaction

leves (i.e., the decision maker could argue that there was insufficient income and excessiverisk). The
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mode er would then alter the weights on those objectives and rerun the model. The process would continue
until the decision maker was satisfied. This approach has the advantage of obtaining goal weights consistent
with the decision maker's preferences and the potentia disadvantage of obtaining the proper output with the
wrong set of goal weights, leading to improper solutions when oneis doing further anaysis.

Findly, we must comment that there is no real way to abstractly set up a multiple objective mode.

The weights for the multiple objectives clearly require interaction with the decision maker.

11.5 Shadow Prices

Much discussion has been devoted in previous chapters to shadow prices but little here. Inthis
section we explore the meaning of shadow prices in aweighted multiple objective problem and derive
meaningful shadow prices.

The shadow prices for awelghted multiobjective problem nominally give the margina changein the
weighted utility of amarginal right hand side change. The weighted utility isamulti-dimensional utility
measure constructed as the sum of theindividua objectivestimestheir weights. However, one must ask how
useful it isto know the expected change in this multi-dimensional utility function. This ordinarily would
probably not be terribly useful as decision makers will be more interested in knowing what happensto the
specific objectives. Mathematically, the effect on the specific objectives may be derived asfollows. The
restatement of the first weighted multiple objective function formulation is

Max > wga,

st. - g. X, o+ q = 0 fordlr

jZ a; X < b, for dl k
X, > 0 for dl ]
q, ; 0 foralr
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We may diminate the equality constraints to get

Max X w, (X 9, %;)
r j

A

s.t. Y aijj < b, for dl k
j

X

[\

0 for dlj
Rearranging, we obtain

Max X (X W, g,) X,
j r

A

s.t. Y aijj < b, for dl k
j

X, > 0 for dl |

Note that each variable X ; has an objective function coefficient which isthe sum of the weightstimesits

v

relative goal contributions. This can be collapsed using
C = (? w, g;)
or, in matrix terms,
C=WG
We now turn our attention to shadow prices, given by
U=C,B*
The C; terms within the multiobjective programming mode are given by the multiplication of goa

weights times the god levelsinvolved with the basic variables

b b
SRR 1Y
b b

Cy = WG, = [Wl W2...Wr] Y1+ Oom

where the superscript b on the g terms refer to the coefficients associ-ated withthe bas cvaiableinthe
various objectives.
The shadow price term can be rewritten as
U=CyB1=WG,B?
Here, theterm G ; B gives an unweighted set of shadow prices, each columnof G ; B shows how each
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objective function is affected by right hand side changes. Practically, these shadow prices could be obtained
analyticaly from small problems and from larger problems by employing the solver starting from the optimal
solution which can do a pricing pass but does not optimize (doing zero iterations).
11.5.1 Example

Suppose we were to maximize the following multiple god objective problem

and we are willing to assume that the weights are each 1. The problem with the composite objective

10X, + X,
Max

-7X, + X,
st. X, - X,

X, + X, < 10
X

IA
a1

X

v
o

17 2

function then becomes

Max 1(10X + X)) + 1(-7X, + X,) = 3X, + 2X,

st. X, - X, <5
X, + X, < 10
X X, > 0

Solving this problem (see file SHADOW) we find that our solution conssts X ;=7.5and X ,=2.5. equals 2.5.

The basis matrix and itsinverse are

~ 1 -1 g 5 5
11 |-5 5
The composite shadow prices are
CsB*=[3 2 ] = [5 25]

However, if we break this down we get
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45 5.5

WGB! =1 1] 4 3

10 1
-7 1

5 .5] -

-5 5

wherethelast matrix gives the shadow pricesin terms of individual objectives. Thus, the change of one unit
intheright hand side will increase the first objective by 4.5 while decreasing the second objective by 4.
These shadow prices are more meaningful than the weighted shadow prices asthey tdll the implications of
resource changes for each objective. Note that the weighted problem shadow prices are smply theindividua
weights times the shadow prices of this problem.

Preckd et a. proposed an dternative where they estimate relevant shadow prices by dividing through
the by shadow prices on the individual objective accounting rows. However, this does not work aswell asthe
theory above, as the shadow priceswill be strictly proportional across the goals which need not happen in the

general case (i.e. in the example above).
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Table 11.1. Tableau for L exicographic Example

Min W,
st. 67X, 66X, 66.3X,4 80X, 78.5X5 78.4X, p = 0
0.8X, 1.3X%, 0.2X, 1.2X, 1.7Xs 0.5X¢ = 140
0.5X, 0.2X, 1.3X, 0.7X, 0.3Xs 1.5X, = 90
0.4X, 0.4X, 0.4X, X, Xs X < 120
X 1.05X%, 1.1X, 0.8X, 0.82X5 0.84X¢ = 125
p + w > 9000
+ w, > 30
+ W, > 25
p w, > 9500
A < o
W, < o
Ws < o
w, < o
X1 X, X3 Xa Xs Xe W, o, W, . W w, > 0
p Z o

11-18
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Table11.2.

GAM S Formulation of L exicographic Example

5 SET GOALS
6
7 PROCESS
8
9
10 RESOURCE
11
13 ALI AS( GOALS, GOAL) ;

GOALS IN THE ORDER THEY ARE TO BE MET
/ PROFI T1, LABOR, LATHETI ME, PROFI T2/
TYPES OF PRODUCTI ON PROCESSES
/ FUNCTNORM , FUNCTMXSML ,
, FANCYNORM , FANCYMXSM.
TYPES OF RESCURCES
/ SMLLATHE, LRGLATHE, CARVER, LABCR/

FUNCTMXLRG
FANCYMXLRG

15  PARAMETER PRI CE( PROCESS) PRODUCT PRI CES BY PROCESS

16 / FUNCTNORM 82, FUNCTMXSM. 82, FUNCTMXLRG 82
17 , FANCYNORM 105, FANCYMXSM. 105, FANCYMXLRG 105/
18 PRODCOST( PROCESS) COST BY PROCESS

19 / FUNCTNORM 15, FUNCTMXSML 16 , FUNCTMXLRG 15.7
20 , FANCYNORM 25, FANCYMXSM. 26.5, FANCYMXLRG 26. 6/
21 RESORAVAI L( RESOURCE) RESOURCE AVAI LABLI TY

22 / SMLLATHE 140, LRGLATHE 90,

23 CARVER 120, LABOR 125/

24 TARGET( GOALS) GOAL TARGET LEVELS

25 / PROFI T 9000, LABOR 30, LATHETI ME 25
26 , PROFI T2 9500/

27 DEV(GOALS)  MAXI MUM DEVI ATI ON BY GOAL

28 VEI GHTS( GOALS) VEEI GHTS BY GOAL

30 DEV( GOALS) =999999;

31 VEI GHTS( GOALS) =0. 00001;

33  TABLE RESOURUSE( RESOURCE, PROCESS) RESOURCE USAGE

35 FUNCTNORM ~ FUNCTMXSM.  FUNCTMXLRG

36 SM.LATHE 0. 80 1.30 0. 20

37 LRGLATHE 0.50 0. 20 1.30

38 CARVER 0. 40 0. 40 0. 40

39 LABCR 1. 00 1.05 1.10

40 + FANCYNORM ~ FANCYMXSM.  FANCYMXLRG

41 SM.LATHE 1.20 1.70 0.50

42 LRGLATHE 0.70 0.30 1. 50

43 CARVER 1. 00 1. 00 1. 00

44 LABOR 0. 80 0.82 0. 84;

46  POSI TI VE VAR ABLES

47 PRODUCTI ON( PROCESS) | TEMS PRODUCED BY PROCESS

48 | DLE( RESOURCE) SLACK VAR ABLES FOR RESOURCES

49 GOALLEVEL( GOALS) GOAL LEVELS

50 PROFI T TOTALPROFI T

51 SHORTFALL( GOALS) GOAL SHORTFALLS;

52 VAR ABLES

53 GOALOBJ GOAL OBJECTI VE;

54 EQUATI ONS

55 oBIT OBJECTI VE FUNCTI ON

56 PROFI TACCT PROFI T ACCOUNTI NG

57 AVAI LABLE( RESOURCE) ~ RESOURCES AVAI LABLE

58 | DLLABGOAL | DLE LABOR GOAL

59 PROFI TGL1 PROFI T1 GOAL

60 PROFI TGL2 PROFI T2 GOAL

61 LATHEGOAL | DLE LATHE GOAL

62 TARGS( GOALS) GOAL TARGETS

63 MAXSHORT( GOALS) SHORTFALL LIM TS;

64

65  OBJT.. GOALOBJ =E= SUM GOALS, WEI GHTS( GOALS) * SHORTFALL( GOALS)) ;
66

67 PROFITACCT.. PROFIT =E=

68 SUM PROCESS, ( PRI CE( PROCESS) - PRODCOST( PROCESS) )

69 * PRODUCTI ON( PROCESS)) ;

70

71 AVAI LABLE( RESOURCE) . .

72 SUM PROCESS, RESOURUSE( RESOURCE, PROCESS) * PRODUCTI ON( PROCESS) )
73 +I DLE( RESOURCE)  =E= RESORAVAI L( RESOURCE) ;
74

75 | DLLABGOAL. . | DLE("LABOR') =E= GOALLEVEL("LABCR') ;
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Table 11.2. GAM S Formulation of L exicographic Example (Continued)

76 PROFI TGLL. . PROFI T =E= GOALLEVEL(  PROFITL"),

77  PROFITGL2.. PROFI T =E= GOALLEVEL("PROFIT2");

78  LATHEGOAL.. | DLE( " LRGLATHE" ) + DLE( " SMLLATHE")

79 =E= GOALLEVEL(" LATHETI ME") ;

80  TARGS(GOALS).. GOALLEVEL(GOALS) + SHORTFALL(GOALS) =G= TARGET(GOALS) :
81

82  MAXSHORT(GOALS).. SHORTFALL(GOALS) =L= DEV( GOALS);

83

84 MODEL RESALLCC /ALL/;
85 PARAMETER  GOALDATA( GQOAL, *, *)
86 LOOP( GOAL,

87 VEI GHTS( GOAL) =1.
88

89 SOLVE RESALLOC USING LP M NI M ZI NG GOALOBJ;

90 DEV( GOAL) =SHORTFALL. L( GOAL) ;

91 VEI GHTS( GOAL) =0. 00001;

92 GOALDATA( GOAL, GOALS, " ATTAI N') =GOALLEVEL. L( GOALS) ;

93 GOALDATA( GOAL, GOALS, " SHORT" ) =SHORTFALL. L( GOALS) ;

94 GOALDATA( GOAL, PROCESS, " XLEVEL" ) =PRODUCTI ON. L( PROCESS) ;
95 )

96 DI SPLAY GOALDATA;
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Table11.3. Solution to L exicographic Example

Pr oducti on
Level

Goal Bei ng Sol uti on Goal Coal Coal
Pur sued Item Idle At t ai nment Level Shortfall

PROFI T1 PROFI T1 GOAL 9500. 000 9500 0
. LABOR GOAL 25.976 30 4.024
. LATHETI ME GOAL 7.927 25 17.073
. PROFI T2 GOAL 9500. 000 9500 0
. FUNCTNORM PROD

12. 195
. FANCYNORM PROD

108. 537

LABOR . PROFI T1 GOAL 9481. 579 9500 0
. LABOR GOAL 30. 000 30 0
. LATHETI ME GOAL 4. 359 25 20. 641
. PROFI T2 GOAL 9481. 579 9500 18. 421
. FANCYNORM PROD

115. 296
. FANCYMXLRG PROD

3. 289

LATHETI ME . PROFIT1 GOAL 9000. 000 9500 0
. LABOR GOAL 30. 000 30 0
. LATHETI ME GOAL 20. 663 25 4.337
. PROFI T2 GOAL 9000. 000 9500 500. 000
. FUNCTNORM PROD

15. 152
. FANCYNORM PROD

99. 811

PROFI T2 . PROFI T1 GOAL 9000. 000 9500 0
. LABOR GOAL 30. 000 30 0
. LATHETI ME GOAL 20. 663 25 4.337
. PROFI T2 GOAL 9000. 000 9500 500. 000
. FUNCTNORM PROD

15. 152
. FANCYNORM PROD

99. 811
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Table11.4. Tableau for Weighted Tradeoff Example

Max d + 4d, + 4d,
st. 67X, + 66X, + 663X, + 80X, + 785X, + 784X, - p = 0
08X, + 13X, + 02X, + 12X, + 17X, + 05X, + S = 140
05X, + 02X, + 13X, + 07X, + 03X, + 15X, + S = 9
04X, + 04X, + 04X, + X, + Xs + Xe < 120
X, + 105X, + 11X, + 08X, + 082X, + 084X, + S = 125
- p + 10500d, = 0
-5 + 125d, = 0
-8 + S + 230d, = 0
X. X, Xs Xe Xs Xe s .S .S d d d; > 0
p ; 0
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Table11.5. GAMS Setup for Weighted Objective Example

4

5 SET GOALS / PROFI T, LABOR, LATHETI ME/

6 PROCESS TYPES OF PRODUCTI ON PROCESSES

7 / FUNCTNORM , FUNCTMXSM. , FUNCTMXLRG

8 , FANCYNORM ,  FANCYMXSM. , FANCYMXLRG/

9 RESOURCE TYPES OF RESOURCES

10 / SMLLATHE, LRGLATHE, CARVER, LABOR/

11

12 PARAMETER PRI CE( PROCESS) PRODUCT PRI CES BY PROCESS

13 / FUNCTNORM 82, FUNCTMXSM. 82, FUNCTMXLRG 82

14 , FANCYNORM 105, FANCYMXSM. 105, FANCYMXLRG 105/

15 PRODCOST( PROCESS) COST BY PROCESS

16 / FUNCTNORM 15, FUNCTMXSML 16 , FUNCTMXLRG 15.7

17 , FANCYNORM 25, FANCYMXSM. 26.5, FANCYMXLRG 26. 6/

18 RESORAVAI L( RESOURCE) RESOURCE AVAI LABLI TY

19 / SMLLATHE 140, LRGLATHE 90,

20 CARVER 120, LABOR 125/

21 VEI GHTS( GOALS) VEEI GHT FOR GOALS

22 /PROFIT 1,LABOR 0.4, LATHETI ME 0. 4/

23 MAGNI TUDE( GOALS) MAGNI TUDE FOR GOALS

24 / PROFIT 10500/ ;

25 MAGNI TUDE( " LATHETI ME" ) =RESORAVAI L( " SMLLATHE" ) +RESORAVAI L( " LRGL
ATHE") ;

26 MAGNI TUDE( " LABOR' ) =RESORAVAI L( " LABCR') ;

27

28

29  TABLE RESOURUSE( RESOURCE, PROCESS) RESOURCE USAGE

30

31 FUNCTNORM ~ FUNCTMXSM.  FUNCTMXLRG

32 SM.LATHE 0. 80 1.30 0. 20

33 LRGLATHE 0.50 0. 20 1.30

34 CARVER 0. 40 0. 40 0. 40

35 LABCR 1. 00 1.05 1.10

36 + FANCYNORM ~ FANCYMXSM.  FANCYMXLRG

37 SM.LATHE 1.20 1.70 0.50

38 LRGLATHE 0.70 0.30 1. 50

39 CARVER 1. 00 1. 00 1. 00

40 LABOR 0. 80 0.82 0. 84;

a1

42 POSI TI VE VAR ABLES

43 PRODUCTI ON( PROCESS) | TEMS PRODUCED BY PROCESS

44 | DLE( RESOURCE) SLACK VAR ABLES FOR RESOURCES

45 GOALLEVEL( GOALS) GOAL LEVELS

46 PROFI T TOTALPROFI T;

47 VAR ABLES

48 GOALOBJ GOAL OBJECTI VE;

49  EQUATI ONS

50 oBIT OBJECTI VE FUNCTI ON

51 PROFI TACCT PROFI T ACCOUNTI NG

52 AVAI LABLE( RESOURCE)  RESOURCES AVAI LABLE

53 | DLLABGOAL | DLE LABOR GOAL

54 PROFI TGOAL PROFI T GOAL

55 LATHEGOAL | DLE LATHE GOAL;

56

57  OBJT.. GOALOBJ =E= SUM GOALS, WEI GHTS( GOALS) * GOALLEVEL( GOALS)) ;

58

59 PROFITACCT.. PROFIT =E=

60 SUM PROCESS, ( PRI CE( PROCESS) - PRODCOST( PROCESS) )

61 * PRODUCTI ON( PROCESS)) ;

62

63  AVAI LABLE( RESOURCE) . .

64 SUM PROCESS, RESOURUSE( RESOURCE, PROCESS) * PRODUCTI ON( PROCESS) )

65 +I DLE( RESOURCE)  =E= RESORAVAI L( RESOURCE) ;

66

67 | DLLABGOAL. . | DLE("LABOR') =E= GOALLEVEL("LABOR')* MAGNI TUDE( " LABOR') ;

68  PROFI TGOAL. . PROFI T =E= GOALLEVEL("PROFI T") * MAGNI TUDE( " PROFI T") ;

69  LATHEGOAL.. | DLE( " LRGLATHE" ) + DLE( " SMLLATHE")

70 =E= GOALLEVEL(" LATHETI ME") * MAGNI TUDE( " LATHETI M E") ;

71 MODEL RESALLCC /ALL/;
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72 SOLVE RESALLOC USI NG LP MAXI M ZI NG GOALCBJ,
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Table11.6. Tableau for Weighted Tradeoff with Targets Example

Max + dy-10d;, + .1d-4d; - 1d, - 4d;  + 9d," - 1d;
st. 67X, 66X, 663X, + 80X, + 785X, + 784X, - = 0
0.8X, 1.3X, 02X, + 12X, + 17X + 05X, = 140
05X, 0.2X, 13X, + 07X, + 03X, + 15X, = 90
0.4X, 0.4X, 04X, + X, + Xy + Xq < 120
X, 1.05X, 11X, + 08X, + 082X, + 084X, + s = 125
p - 9000d,"+9000d, = 9000
S - 30d," 30d, = 30
- 2507 + 2505 = 25
p - 9500d," + 9500d; 9500
X, X, Xs Xo o, Xs Xs .S dfd; df,d; df,di dfd; > 0
p 2 o0

<
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Tablel11.7. GAM S Setup for Weighted Objective with Target Example

P\
5 SET GOALS GOALS | N THE ORDER THEY ARE TO BE MET

6 / PROFI T1, LABOR, LATHETI ME, PROFI T2/

7 PROCESS TYPES OF PRODUCTI ON PROCESSES

8 / FUNCTNORM , FUNCTMXSM. , FUNCTMXLRG
9 , FANCYNORM ,  FANCYMXSM. , FANCYMXLRG
10 RESOURCE TYPES OF RESOURCES

11 / SMLLATHE, LRGLATHE, CARVER, LABOR/

12 DI R GOAL DEVI ATI ON DI RECTI ON  / MORETHAN, LESSTHAN/
13

14 ALI AS( GOALS, GOAL) ;

15

16  PARAMETER PRI CE( PROCESS) PRODUCT PRI CES BY PROCESS

17 / FUNCTNORM 82, FUNCTMXSM. 82, FUNCTMXLRG 82

18 , FANCYNORM 105, FANCYMXSM. 105, FANCYMXLRG 105/

19 PRODCOST( PROCESS) COST BY PROCESS

20 / FUNCTNORM 15, FUNCTMXSML 16 , FUNCTMXLRG 15.7
21 , FANCYNORM 25, FANCYMXSM. 26.5, FANCYMXLRG 26. 6/
22 RESORAVAI L( RESOURCE) RESOURCE AVAI LABLI TY

23 / SMLLATHE 140, LRGLATHE 90,

24 CARVER 120, LABOR 125/

25 TARGET( GOALS) GOAL TARGET LEVELS

26 / PROFI T 9000, LABOR 30, LATHETI ME 25
27 , PROFI T2 9500/

28 MAGNI TUDE( GOALS) MAGNI TUDE FOR GOALS;

29 MAGNI TUDE( GOALS) =TARGET( GOALS) ;

30

31 TABLE VEI GHTS( GOALS, di r) VEEl GHTS BY GOAL

32

33 MORETHAN ~ LESSTHAN

34 PROFI T1 1 -10

35 LABCR 0.1 -0.4

36 LATHETIME 0.1 -0.4

37 PROFI T2 .9 - 1. :

38

39 TABLE RESOURUSE( RESOURCE, PROCESS) RESOURCE USAGE

40

41 FUNCTNORM ~ FUNCTMXSM.  FUNCTMXLRG

42 SMLLATHE 0. 80 1.30 0. 20

43 LRGLATHE 0.50 0. 20 1. 30

44 CARVER 0. 40 0. 40 0. 40

45 LABOR 1. 00 1.05 1.10

46+ FANCYNORM ~ FANCYMXSM.  FANCYMXLRG

47 SMLLATHE 1.20 1.70 0. 50

48 LRGLATHE 0.70 0.30 1. 50

49 CARVER 1. 00 1. 00 1. 00

50 LABOR 0. 80 0.82 0. 84;

51

52  POSI TI VE VAR ABLES

53 PRODUCTI ON( PROCESS) | TEMS PRODUCED BY PROCESS

54 | DLE( RESOURCE) SLACK VAR ABLES FOR RESOURCES

55 GOALLEVEL( GOALS) GOAL LEVELS

56 PROFI T TOTALPROFI T

57 SHORTFALL( GOALS) GOAL SHORTFALLS

58 EXCESS( GOALS) GOAL EXCESSES;

59 VAR ABLES

60 GOALOBJ GOAL OBJECTI VE;

61  EQUATI ONS

62 oBIT OBJECTI VE FUNCTI ON

63 PROFI TACCT PROFI T ACCOUNTI NG

64 AVAI LABLE( RESOURCE)  RESOURCES AVAI LABLE

65 | DLLABGOAL | DLE LABOR GOAL

66 PROFI TGL1 PROFI T1 GOAL
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67 PROFI TGL2 PROFI T2 GOAL

Tablel11.7. GAM S Setup for Weighted Objective with Target Example (Continued)
68 LATHEGOAL IDLE LATHE GOAL

69 TARGS(GOALS) GOAL TARGETS ;

70

71 OBJT.. GOALOBJ=E= SUM(GOALSWEIGHTS(GOALS,"LESSTHAN")* SHORTFALL(GOALS)
72 +WEIGHTS(GOALS"MORETHAN")* EXCESS(GOALS)) ;

73

74 PROFITACCT.. PROFIT =E=

75 SUM (PROCESS, (PRI CE(PROCESS)-PRODCOST(PROCESS))

76 * PRODUCTION(PROCESS)) ;

77

78 AVAILABLE(RESOURCE)..

79 SUM(PROCESSRESOURUSE(RESOURCE,PROCESS)* PRODUCTION(PROCESS))

80 +IDLE(RESOURCE) =E= RESORAVAIL(RESOURCE);

81

82 PROFITGLL. PROFIT  =E= GOALLEVEL("PROFIT1");

83 IDLLABGOAL.. IDLE("LABOR") =E= GOALLEVEL("LABOR");

8 LATHEGOAL. IDLE("LRGLATHE")+IDLE("SMLLATHE")

85 =E= GOALLEVEL ("LATHETIME");

86 PROFITGL2. PROFIT  =E= GOALLEVEL("PROFIT2");

87

88 TARGS(GOALS)..

89  GOALLEVEL(GOALS) + MAGNITUDE(GOALS)*( SHORTFALL(GOALS) -EXCESS(GOALS))
0 =E= TARGET(GOALS) ;

9

92

93 MODEL RESALLOC/ALL/;

%

95 SOLVE RESALLOC USING LP MAXIMIZING GOALOBJ
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