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Abstract

In order to improve the efficiency of electricity distribution networks, some regulators have

adopted incentive regulation schemes that rely on performance benchmarking. Although

regulation benchmarking can influence the ‘‘regulation game,’’ the subject has received limited

attention. This paper discusses how strategic behaviour can result in inefficient behaviour by

firms. We then use the Data Envelopment Analysis (DEA) method with US utility data to

examine implications of illustrative cases of strategic behaviour reported by regulators. The

results show that gaming can have significant effects on the measured performance and

profitability of firms.
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1. Introduction

Since 1990, a liberalisation trend has transformed the structure, operating

environment, and governance of the electricity sector in many countries around

the world. An important aspect of this trend has been the establishment of

regulatory agencies or, where a regulator already existed, a shift from rate-of-
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return (ROR) regulation of vertically integrated utilities, to regulation of diverse

unbundled activities. In liberalised sectors, the potentially competitive generation

and supply activities increasingly operate in a market-oriented environment. In

addition, many transmission and distribution networks, generally viewed as natural

monopolies, have undergone regulatory reform.

Opportunistic behaviour by regulated firms, including electric utilities, has been

discussed extensively in the literature in the context of ROR regulation and

asymmetric information between firm and regulator (see, e.g., Armstrong et al.,

1994; Vickers and Yarrow, 1993). More recently, the notion of strategic behaviour by

generating companies in the form of exercising market power in competitive

wholesale electricity markets has attracted considerable interest. Market power in

the generation market can arise from ownership concentrations, lack of access to and

constraints in transmission networks, tight supply–demand conditions, and flawed

trading and regulatory arrangements. This interest has arisen from the failure of some

reforms to ensure effective competition, the recent electricity crisis in California, and,

to some extent, from the collapse of the energy trading firm Enron (Borenstein et al.,

2002; Joskow and Kahn, 2002).

In the post-reform era, some countries and jurisdictions have moved away

from ROR regulation of transmission and distribution utilities and adopted

incentive-based models. Some regulators, in particular those in Europe and

Australia, have adopted benchmarking as a tool in the incentive regulation of

network utilities (Jamasb and Pollitt, 2001). This development can affect the

nature of the ‘‘regulation game’’ played between regulator and network utilities.

However, this emerging aspect of regulatory gaming or strategic behaviour has

received relatively little attention.

This paper focuses on strategic behaviour, or gaming, in the context of

benchmarking in incentive regulation of distribution utilities. We refer to strategic

behaviour or gaming as the type of behaviour that aims to increase profits without

achieving real efficiency gains, i.e., they defy the incentive purpose of bench-

marking, the regulatory objectives of efficient operation, and protection of public

interest. It should be noted that ‘‘gaming’’ behaviour is not necessarily illegal and

should be viewed within the regulatory context, as the optimisation process must

remain within general accounting, fiscal, legal, and corporate governance statutes

and policies.

In this study, we identify and examine the ways in which regulatory benchmarking

can influence firm behaviour and analyse some possible implications. We then,

utilising a data set of distribution activities of a sample of US electric utilities,

illustrate strategic issues that a Public Utility Commission overseeing few electric

utilities may encounter when using frontier-based benchmarking methods in incentive

regulation. The purpose of the exercise is to examine the main issues involved and

general lessons that are applicable to other regulatory settings.

The next section reviews the gaming aspects of regulatory benchmarking. Section

3 presents the data and methodology used in this study. Section 4 describes the

main findings of a quantitative analysis of various gaming strategies on the outcome

of regulatory benchmarking. Section 5 is a discussion of lessons and conclusions.
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2. Gaming in incentive regulation benchmarking

2.1. Incentive regulation2

Asymmetric information between the regulator and the regulated firm is a key issue in

the regulation of natural monopolies. Baron and Myerson (1982) and Laffont and Tirole

(1986) address regulation of monopoly firms in the presence of asymmetric information

in the form of unknown costs and unobservable effort to reduce costs.3 A rather common

criticism of the ROR regulation model is that it lacks incentives for efficiency

improvements and encourages firms to engage in strategic behaviour. Averch and

Johnson (1962) showed that ROR regulation encourages utilities to inflate their

regulatory asset base through over-investment and socially inefficient resource allocation.

The argument finds some parallels in the US power sector in the 1970s and 1980s where

stranded costs of over-investment in generation capacity contributed to electricity price

increases and, consequently, the calls for restructuring of the sector in the high-price

states (Joskow, 1997).

Regulatory reform of network industries around the world has challenged the

traditional ROR regulation, as regulators have adopted a variety of incentive-based

models. These models aim to provide monopolies with the incentive to utilise their

exclusive information on effort and costs to improve operating efficiency and investment

decisions and to ensure that consumers benefit from the efficiency gains.4 In the US,

incentive-based regulation generally has taken the form of price cap or sliding scales

(usually referred to as Performance-Based Regulation [PBR] or Rate-Making). The

interest in incentive regulation is not due to new contributions from economic theory;

rather, it reflects the need and desire for new practical approaches to regulation, even

though these may not always be fully in line with theory (Crew and Kleindorfer, 1996,

p. 215).

In this paper, we focus on price/revenue cap regulation model based on the RPI-X

formula.5 Price cap regulation de-couples profits from costs by setting maximum prices

for the duration of a specified regulatory lag or rate period. The utility is then allowed to

retain the profits in terms of the difference between the regulated price and its actual costs

during the (typically 5-year) rate period. Price cap regulation was first implemented in

post-privatisation regulation of British Telecom (Littlechild, 1983). The model has since

been adopted in the regulation of other sectors in Britain and in many other countries.6

An important feature of incentive regulation is the use of benchmarking, which can be

broadly defined as the comparison of a firm’s actual performance against some

predefined reference or benchmark performance. A perceived advantage of benchmark-

ing has been that it reduces the information asymmetry problem that occurs in ROR
2 This section draws heavily on Jamasb et al. (2003).
3 See also Armstrong et al. (1994) for a review of these models.

5 For the purposes of this study, unless specified, we do not differentiate between a price and a revenue cap

regulation based on the RPI-X formula.
6 See Vickers and Yarrow (1993) for a description of the methodology and implementation in Britain.

4 See Joskow and Schmalensee (1986) for a discussion of approaches to incentive regulation of electric

utilities.
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regulation by reducing the regulator’s reliance on the firm’s own costs, but references the

price to an external non-influencable benchmark.

2.2. The nature of regulation benchmarking game

A highly contentious issue in price and revenue cap regulation is how to determine

efficiency improvements and translate these into tariff changes (X-factors). Regulators

have adopted different benchmarking methods to arrive at X-factors, and it is in the

implementation of these that the regulation game may be played. For the purposes of this

study, we can distinguish between two types of benchmarking methods used in setting the

X-factors: (i) frontier-based and (ii) non-frontier techniques.7 The division also reflects the

divide in benchmarking approaches used by, on the one hand, the European and Australian

electricity regulators, and the PUCs in the United States on the other. The European

regulators have generally adopted frontier-based methods as the basis on which to calculate

the X-factors, while those PUCs that have adopted price caps have tended to use measures

such as Total Factor Productivity (TFP) to calculate the efficiency requirements.

From a regulatory policy point of view, a major difference between the frontier and

non-frontier benchmarking is that the former has a stronger focus on performance

variations between firms. Frontier methods (such as Data Envelopment Analysis [DEA]

and Corrected Ordinary Least Squares) appear suitable at initial stages of regulatory

reform when a primary objective is to reduce the performance gap among the utilities

through firm-specific efficiency requirements. Non-frontier methods may be used to

mimic competition among firms with relatively similar cost levels, or when there is a

lack of data and comparators for the use of frontier methods. There is also an

important methodological difference between frontier and non-frontier approaches. In

the frontier-based approaches, the efficiency scores are measured relative to an efficient

frontier. This results in an interdependence between a firm’s efficiency measure (score)

and strategic behaviour involving frontier firms in the sample. In the index number

approach to TFP at sector level, each firm’s benchmark is the same and can only be

marginally (if at all) affected by own or other firms’ strategic behaviour.

In principle, the aim of benchmarking within incentive regulation is to exploit the

efficiency improvement potential of the regulated firm. Regulators should recognise

that their benchmarking exercise inevitably shapes the efforts and directs considerable

resources of the firms towards the make-up and variables of these models. However,

while benchmarking can measure ‘‘true’’ performance improvements, gaming can

sometimes produce illusive or ‘‘virtual’’ efficiency improvements. Therefore, bench-

marking models need to strike a balance between reflecting the main performance

drivers of the business in question and reducing incentives for engaging in unproduc-

tive method or model-induced strategic behaviour.

This type of behaviour is rational from a firm’s perspective. Optimising the regulatory

process and exploiting the information advantage will maximise profits for shareholders.

In cases where customers are, directly or indirectly, shareholders (e.g., cooperatives or
7 The review of the methods in this section is based on Jamasb and Pollitt (2001) and Pollitt (1995). See also

Coelli et al. (1998) and DTe (1999).
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mutuals in the strict sense, or municipal owned), the firm’s excess profits might still

benefit the local consumer. However, where customers have no relation with the capital of

the firm, such regulatory strategies are likely to lead to welfare losses.

Regulated firms may attempt to influence the use of regulation benchmarking at the

adoption stage. Although these efforts may not be considered as gaming, utilities may

attempt to influence (i) the use of benchmarking in incentive regulation, (ii) the choice of

method, model, and variables (and their weighting), (iii) the definition of variables adopted

during the consultation process, and (iv) the translation of efficiency scores into X-factors.

At a later stage, firms may use gaming strategies to benefit from the regulator’s adopted

benchmarking model.

Some regulation games are associated with the periodic aspect of ROR and incentive-

based regulatory reviews through timing of specific types of actions. Dynamic aspects of

strategic behaviour of the firm associated with regulatory lag are known to regulators and

have been addressed by some authors (see Baumol and Klevorick, 1970; Sappington,

1980). Di Tella and Dyck (2002), in a study of the Chilean electricity distribution utilities

under price cap regulation, report evidence of cyclical cost reductions that coincide with

the initial years of rate periods and the reverse prior to the next rate review.

Gaming behaviour is not only limited to private firms. Publicly owned firms can also be

motivated to pursue monetary or other performance measures. Several countries noted for

the use of benchmarking, including the Netherlands, Norway, and Australia, have

significant municipal or state ownership. Courty and Marschke (2002), in a study of job

training agencies, show that public organisations can engage in gaming by timing their

performance reports in order to benefit from awards. They show that performance

incentives can come at a cost by having a negative effect on efficiency.

Broadly, it is possible to differentiate between two types of strategic behaviour. The

first is behaviour that may not have a material effect on the efficient operation of the firm

and is intended to present the performance of the firm in a more favourable light. For

example, a firm may shift costs from operating to capital costs or influence the choice of

output variables in order to affect measured relative performance. The main undesirable

outcome of such virtual efficiencies is that they result in welfare transfer from customers,

or even other firms, to the gaming firm through lower efficiency targets than the true

underlying efficiency would suggest.

The second type of gaming is in the form of behaviour that distorts the efficient

operation and investment decisions of the firm. For example, the firm might increase its

cost base or delay efficiency improvements in periods leading to a new rate case. This type

of gaming results in socially inefficient resource allocation and dead-weight loss. An

important concern with both of these gaming categories in frontier-based approaches is

that, due to the interdependency between the efficiency scores, a firm’s gaming can also

affect the measured performance of other firms.

In cost-based DEA models, the regulator may use controllable operating expenditure

(OPEX) as the input variable and treat capital expenditures (CAPEX) outside of the

benchmarking exercise such as in the UK or alternatively use total expenditures (TOTEX)

as in The Netherlands. This has implications for the possible strategic behaviour by firms. A

firm may appear more efficient by reducing costs, as well as by appearing larger in terms of

higher output variables. For example, if the benchmarking model uses OPEX as input and
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network length or transformer capacity as output and is given approval for expansion plans

for increasing separately treated CAPEX, it can earn a return on its capital expenditures and,

at the same time, increase the output variables and hence its relative efficiency.

Alternatively, the regulator may use OPEX and CAPEX as two separate variables. This

will allow the possible trade-offs between the two types of costs to be reflected in the

model. It has been suggested that where OPEX is used as the only input variable, the chosen

outputs should be independent of CAPEX or adjusted to reflect their relative share of total

costs (Coelli, 2000). In general, a complicating factor in benchmarking is a question of

which model specification best represents the activity of electric distribution utilities.

Jamasb and Pollitt (2001) show that efficiency studies of distribution utilities have used a

variety of variables and model specifications, and the issue is not yet satisfactorily settled.8

The choice of benchmarking model could also serve specific regulatory objectives. For

example, the choice of constant or variable returns to scale models can affect the long-term

structure of the sector. The Dutch regulator has used a constant returns-to-scale DEA

model and assumes that firms can freely adjust their scale of operations through mergers

and acquisitions. Other countries value the maintenance of the number of comparators and

use variable returns to scale measures (e.g., the UK). The UK regulator has estimated the

cost of information loss due to mergers among electricity distribution utilities at £32

million and applies a corresponding reduction in regulated revenue of the merged firms

over a 5-year period (OFGEM, 2002).

2.3. A survey of electricity regulators

As discussed in the previous section, a number of national and state-level electricity

regulators have now adopted regulatory benchmarking using frontier methods. As part of

the background research for this paper, we conducted a survey of eight of these electricity

regulators in order to understand their experience with strategic behaviour associated with

regulatory benchmarking. The full survey results appear in Jamasb et al. (2003); we briefly

review them here.

The survey returns reveal that regulators have experienced three major types of gaming

strategies. The first category includes possible strategic behaviour that is associated with

cost issues. All eight of the surveyed regulators had experienced potential gaming in the

form of shifting of costs and assets across sectors (e.g., electricity vs. gas or water) and

within the electricity sector (e.g., generation, transmission, distribution, and supply),

costing rules, definitions, and rate of return by firms. The second category of reported

issues (experienced again by all eight regulators) involved possible gaming of the

methodology used by the regulators such as influencing the use of benchmarking models

to be used, choice of output and input variables (and their weighting), and information

disclosure. The third category (reported by two of the regulators) is concerned with utility

mergers, an issue this is increasingly faced by some regulators. We follow a rather similar

classification in the analysis of effects of three selected cases of possible strategic

behaviour (in Sections 4.2–4.4).
8 In extremis, certain variables may be used as inputs in one regulatory model, whereas in other regimes, they

are used as outputs. For a Dutch discussion, see Nillesen and Telling (2001).
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It should be noted that determining whether certain behaviour by firms constitutes

gaming is to some degree a subjective matter and therefore requires judgement. In other

words, the perceived motives are often observed indirectly through their effect on the

regulatory objectives or outcomes. Further, because of the complex interplay of firms

and issues, it is virtually impossible to isolate and predict the outcome of a particular

strategy of an individual firm, making it difficult to separate cause and effect. All

gaming opportunities must be conducted within the prevailing legal, accounting, fiscal,

and corporate governance regulations, so gaming should be seen as regulatory model

optimisation rather than fraudulent or deceptive behaviour.
3. Data and methodology

3.1. Data

In order to illustrate numerical examples of the possible effects of strategic

behaviour in regulatory benchmarking, we utilise a data set comprising electricity

distribution business of 28 utilities operating in the northeast of the United States. The

data used is based on annual company returns to the Federal Energy Regulation

Commission (FERC) and Platts (2002) for the financial year 2000. We focus on a

subset of five firms in our sample and examine the effects of gaming on these. These

focus firms could be viewed as firms operating under the jurisdiction of a regulatory

commission in a federal state being benchmarked against a national sample.

Alternatively, the focus firms may be regarded as utilities operating under a national

regulator being benchmarked against an international sample.9 Individual utilities are not

identified here, as we wish to address the issues involved at a general level. Table 1

shows the summary statistics for the entire sample and for the focus firms. As shown in

the table, the focus firms are relatively far from the extreme ends of the larger sample.

3.2. Data envelopment analysis

For the purposes of illustration, we assume that our example regulator makes use of

a frontier benchmarking technique, data envelopment analysis (DEA) in the setting of

firm-specific X-factors. DEA has been a popular benchmarking method with electricity

regulators (see Jamasb and Pollitt, 2001). DEA identifies an efficient frontier made up

of the best practice firms and uses this to measure the relative efficiency scores of the

less efficient firms. Norway uses the DEA in setting revenue caps for regional

electricity transmission and distribution utilities. An advantage of the method is that

it does not require specification of a production or cost function. It allows calculation

of allocative and technical efficiencies that can be decomposed into scale, congestion,

and pure technical efficiencies (Färe et al., 1985).

DEA is a nonparametric method and uses piecewise linear programming to calculate

(rather than estimate) the efficient or best practice frontier of a sample (Farrell, 1957; Färe
9 See Jamasb and Pollitt (2003) for an example and discussion of international regulation benchmarking.



Table 1

Summary statistics for the sample and focus firms

Distribution OPEX

(�US$1000)*

Electricity

delivered (MWh)

Number of

customers

Network

length (miles)

Number

of meters

Maximum

demand (MW)

Focus firms

Firm 1 88,033 14,144,052 582,339 16,390 252,622 2673

Firm 2 219,238 21,261,331 1,000,526 23,391 1,052,369 4961

Firm 3 43,608 14,607,563 491,142 14,900 524,605 2342

Firm 4 20,057 7,933,735 134,554 6121 174,067 926

Firm 5 94,822 21,714,983 680,405 21,735 789,637 3311

Sample

Mean 110,873 13,505,020 553,329 13,095 598,271 2324

Minimum 2885 124,425 26,672 120 27,840 101

Maximum 478,345 41,834,169 3,074,592 41,000 3,301,863 9379

*The operating expenditures are calculated from reported data and adjusted to allow for an allocation of

common administration costs.
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et al., 1985). The decision-making units (DMUs) or firms that make up the frontier

envelop the less efficient firms. The efficiency of the firms is calculated in terms of scores

on a scale of 0 to 1, with the frontier firms receiving a score of 1.

DEA models can be output or input oriented and can be specified as constant returns to

scale (CRS) or variable returns to scale (VRS). Output-oriented models maximise output

for a given amount of input. Conversely, input-oriented models minimise input factors

required for a given level of output. An input-oriented specification is generally regarded

as the appropriate form for electricity distribution utilities, as demand for their services is a

derived demand that is beyond the control of utilities and that has to be met.

The linear program calculating the efficiency score of the ith firm in a sample of N

firms in CRS models takes the form specified in Eq. (1) where h is a scalar (equal to the

efficiency score) and k represents an N� 1 vector of constants. Assuming that the firms

use K inputs and M outputs, X and Y represent K�N input and M�N output matrices,

respectively. The input and output column vectors for the ith firm are represented by xi and

yi, respectively. The equation is solved once for each firm. In VRS models, a convexity

constraint Sk = 1 is added. This additional constraint ensures that the firm is compared

against other firms with similar size.

min
h;k

h;

s:t:

�yi þ Ykz0;

hxi � Xkz0;

kz0

ð1Þ

In Eq. (1), firm i is compared to a linear combination of sample firms which produce at

least as much of each output as it does with the minimum possible amount of inputs. Fig. 1



Fig. 1. Data envelopment analysis.
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illustrates the main features of an input-oriented model with constant returns to scale. The

figure shows three firms (G, H, R) that use two inputs (capital K, labour L) for a given

output Y. The vertical and horizontal axis represent the capital and labour costs per unit of

output, respectively.

Firms G and H produce the given output with lower inputs and form the efficient

frontier that envelops the less efficient firm R. The technical efficiency of firm R relative to

the frontier can be calculated from OJ/OR ratio. Technical efficiency measures the ability

of a firm to minimise inputs to produce a given level of output.

An important step in DEA is the choice of appropriate input and output variables. The

variables should, to the extent possible, reflect the main aspects of resource use in the

activity concerned. DEA can also control for the effect of environmental variables that are

beyond the control of the management of firms but affect their performance. In addition, the

basic DEA model illustrated above does not impose weights on model input and output

variables. However, the model can be extended to incorporate value judgements in the form

of relative weight restrictions imposed on model inputs or outputs. This can be achieved by

including additional constraints to the model. The aim is to control for the influence of

values of individual input and outputs on the efficiency scores (Thanassoulis, 2001).

An advantage of DEA is that inefficient firms are compared to actual firms rather than

to a statistical measure. In addition, DEA does not require specification of a cost or

production function. However, efficiency scores tend to be sensitive to the choice of input

and output variables. Furthermore, the results (scores) are sensitive to measurement errors

in the frontier firms as these comprise the best practice frontier. Also, the method does not

allow for stochastic factors and measurement errors. Finally, as more variables are

included in the models, the number of firms on the frontier increases; therefore, it is

important to examine the sensitivity of the efficiency scores and rank order of the firms to

model specification.

3.3. Preferred models

In order to examine the possible effects of strategic behaviour on the outcome of

regulation benchmarking, we use relatively familiar DEA model specifications. An initial
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model serves as the reference or base model against which we compare the outcomes of

strategic behaviour. A financial model is also used to calculate the benefits and losses from

changes in relative efficiency.

3.3.1. DEA models

Our preferred model is input oriented and assumes constant returns to scale (CRS), so

that the measured relative efficiency of firms is not affected by their size. This is consistent

with the DEA models adopted by the Dutch and Norwegian regulators. Empirical studies

in Norway, Canada, New Zealand, and Switzerland find evidence of the presence of

economies of scale in electric distribution utilities. In some studies, the minimum efficient

firm size in terms of number of customers is estimated to be around 20,000–30,000.10 In

addition, Allas and Leslie (2001) report that about 85% of costs vary with the number of

customers and the units of energy delivered.

The preferred model uses a single cost input reflecting the OPEX of the distribution

business of the utilities. The output variables in our preferred model are (i) units of

electricity delivered, (ii) number of customers, and (iii) length of network. The literature

on relative efficiency analysis and benchmarking does not reveal a universally agreed set

of input and output variables for modelling of electricity distribution utilities. However, as

reported in Jamasb and Pollitt (2001), the input and output variables in our simple model

are among the most widely used in studies of relative performance.

3.3.2. Financial model

The financial model calculates the efficient level of costs for individual firms as the

product of the efficiency scores and OPEX in the reference year. The model assumes that

the efficient cost levels are achieved by the end of a 5-year regulatory rate period and that

the relative efficiency score accurately reflects the possible cost savings without incorpo-

rating measurement error or other stochastic components. This is achieved through annual

efficiency improvement requirements or X-factors calculated for individual firms. Fig. 2

illustrates a gliding path reflecting combinations of X-factors and reference prices. In this

example, a firm’s OPEX are benchmarked, while it is allowed to recover its depreciation

costs and earn a weighted average cost of capital (WACC) on its regulatory asset base

(RAB). In our examples we have used a WACC of 6.8%. Line AC shows the path bringing

the allowed revenues of the firm to the efficient frontier level, inclusive of an anticipated

frontier shift BC, during the course of a 5-year rate period.

However, in reality, the ability of highly inefficient firms to achieve cost savings during

a given period may be limited. Recognising this practical limitation, regulators in the

Netherlands and Norway have introduced limits on maximum efficiency requirements

imposed on least efficient firms. The assigned X-factors in this model are therefore capped

at 8% per year (as in the Netherlands). In addition, the model assumes that the efficient

cost levels can achieve a further 1% efficiency gain (frontier shift) per year over a 5-year

rate period.
10 See Filippini (1996, 1997, 1998) and Filippini and Wild (1998) for studies of Switzerland; Salvanes and

Tjotta (1994, 1998) for Norway; Giles and Wyatt (1993) for New Zealand; and Yatchew (2000) for Canada.



Fig. 2. The gliding path of allowed revenue during a rate period.
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The total efficiency requirements or effective X-factors are then used to calculate the

allowed revenues to cover the firms’ operating expenditures. Ordinarily, regulatory models

calculate X-factors for total allowed distribution revenues regardless of whether operating

or total expenditures (operating plus capital expenditure) are benchmarked. However, for

the purposes of simplicity and transparency, we focus solely on the gaming OPEX and its

effect on efficiency score and X-factor.
4. Results

As highlighted previously, there are various ways in which strategic behaviour can

affect the outcome of a regulation benchmarking. In this section, we report benchmarking

results using a base model, which we assume to be the regulator’s model of choice in the

absence of gaming behaviour. We then examine the results of three selected cases (based

on our survey of electricity regulators) of deviation from the base model that can arise

from strategic gaming.

4.1. Base case—no gaming

Table 2 shows the calculated efficiency scores for the distribution business of 28

electric utilities in our sample (the base model was described in Section 5). Utilities F1–F5

are the focus firms assumed to be operating under the jurisdiction of a single regulator and

being benchmarked within a sample of firms. As shown in the sample, the range of

efficiency scores for the sample is rather wide (26–100%). Four firms, two of which are

among our focus firms (F3 and F4), have an efficiency of 100% and constitute the efficient

frontier. Utilities F1 and F2 of the focus firms score relatively low, while firm F5 is the

most efficient non-frontier firm in our focus group.

Table 3 summarises the results of the base model. As shown in the table, the implied

X-factor for firms F1 and F2 exceeds the maximum 8% and is therefore capped at that



Table 2

Efficiency scores for the sample—base case

Number Efficiency score (%)

F1 57.6

F2 38.1

F3 100.0

F4 100.0

F5 67.6

F6 41.6

F7 29.0

F8 30.4

F9 78.9

F10 32.1

F11 43.2

F12 43.7

F13 61.6

F14 66.8

F15 100.0

F16 72.8

F17 34.9

F18 22.6

F19 58.5

F20 49.3

F21 41.8

F22 34.3

F23 50.8

F24 60.0

F25 76.1

F26 57.3

F27 100.0

F28 43.6
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level. The final X-factor is the effective (or total) rate of cost reduction assigned to the

firms and includes a 1% annual frontier shift in efficient cost level. It is interesting to

note that under a capping regime, a lower efficiency score can translate into a lower

final X-factor.
Table 3

Summary results—base case

Base case Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

Efficiency score (%) 57.6 38.1 100.0 100.0 67.6

X-factor (%) 10.4 17.5 0.0 0.0 7.5

Implied X-factor (%) 8.0 8.0 0.0 0.0 7.5

Final X-factor (%) 8.8 8.5 1.0 1.0 8.5

OPEX reference year (�US$1000) 88,033 219,238 43,608 20,057 94,822

Accumulated required cost savings

rate period (�US$1000)

102,537 249,027 6455 2969 106,575

Accumulated allowed OPEX rate

period (�US$1000)

337,629 847,161 211,587 97,316 367,535
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The two frontier firms in our focus group are the smallest firms in terms of OPEX in the

reference year, while the largest firm appears as the least efficient firm among these. The

table also shows the allowed OPEX for the firms during the rate period and the required

cost reductions that the effective X-factors represent in relation to the OPEX in the

reference year (undiscounted).

4.2. Gaming OPEX

As discussed previously, one of the perverse incentives associated with price cap

regulation is that firms may attempt to inflate their distribution cost base before a price

review. As shown here, relatively small changes in X-factors that do not appear significant

in relation to the original X-factor can result in considerable revenue implications.

Table 4 shows the effect of a 1%, 5%, and 10% increase in the OPEX of firm F5 in

the reference year 2000 on its allowed revenue for the rate period 2001–2005. The

table shows that as the firm’s cost base increases, its efficiency score declines. This

results in higher X-factors and consequently higher cost-saving requirements. At the

same time, the firm enjoys a higher cost base that gives it a higher level of allowed

revenues. The table shows the net increase in allowed cost recovery or revenue after

controlling for the effect of higher efficiency requirements through higher X-factor. For

example, a 5% increase in the cost base prior to the rate review results in a reduction of

the efficiency score of 6 percentage points, yet also results in a 3.6% net increase in

allowed revenues corresponding to $19.6 per customer for the rate period.

Table 5 shows the effect of a 10% cost inflation by each of the other four firms for the

other four firms (keeping each of the other firms’ costs unchanged). As shown in the table,
Table 4

Summary results—gaming by increasing OPEX

Firm 5 Base case Base OPEX

plus 1%

Base OPEX

plus 5%

Base OPEX

plus 10%

Efficiency score (%) 67.6 66.9 64.3 61.4

X-factor (%) 7.5 7.7 8.4 9.3

Implied X-factor (%) 7.5 7.7 8.0 8.0

Final X-factor (%) 8.5 8.7 8.9 8.9

OPEX reference year

(�US$1000)

94,822 95,770 99,563 104,304

Accumulated required cost

savings (�US$1000)

106,575 109,697 116,954 122,072

D accumulated required cost

savings (�US$1000)

– 3122 10,379 15,497

Accumulated allowed OPEX in

rate period (�US$1000)

367,535 369,154 380,861 399,449

D accumulated allowed OPEX

in rate period (�US$1000)

– 1,620 13,327 31,914

As % of accumulated allowed

revenue (in base case) (%)

– 0.4 3.6 8.7

$ Revenue increase (+)/decrease

(�) per customer

– 2.38 19.59 46.90



Table 5

Summary results—gaming by increasing OPEX by 10%

Firm 1

base OPEX

plus 10%

Firm 2

base OPEX

plus 10%

Firm 3

base OPEX

plus 10%

Firm 4

base OPEX

plus 10%

Efficiency score (%) 52.4 34.7 100.0 100.0

D score from base case (%) � 5.2 � 3.4 0 0

X-factor (%) 12.1 19.1 0.0 0.0

Implied X-factor (%) 8.0 8.0 0.0 0.0

Final X-factor (%) 8.7 8.5 1.0 1.0

OPEX reference year (�US$1000) 96,837 241,161 47,969 22,063

Accumulated required cost savings

(�US$1000)

112,040 272,694 7100 3266

D accumulated required cost savings

(�US$1000)

9503 23,668 645 297

Accumulated allowed revenue in

rate period (�US$1000)

372,143 933,112 232,746 107,048

D accumulated allowed OPEX in

rate period (�US$1000)

34,514 85,951 21,159 9732

As % of accumulated allowed

OPEX (in base case) (%)

10.2 10.1 10.0 10.0

$ Revenue increase (+)/decrease

(� ) per customer

59.27 85.91 43.08 72.33
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the frontier firms F3 and F4 retain the full increase in their cost base. The least efficient

firms F1 and F2, despite receiving lower efficiency scores relative to the base case, benefit

fully from higher cost base due to their capped X-factors. They also achieve an additional

small gain as the 1% frontier shift is applied to a lower efficient cost base.

4.3. Influencing output weights

The selection of appropriate output variables for use in benchmarking models can be a

source of disagreement between regulator and firm. In principle, the main issue is the

extent to which the selected variables are true cost drivers and how accurately they portray

the production function. The underlying concern is how the choice and use of variables

can affect the relative efficiency measure and, consequently, the firms’ revenues. We

modify our base model by assigning a set of weights to the output variables.

As mentioned in Section 4, DEA can be used with weight restrictions applied to inputs

and outputs. In the following example, we examine the effect of output weights similar to

those used by the UK regulator OFGEM, namely, (i) number of customers 50%, (ii) units

of electricity delivered 25%, and (iii) length of distribution network 25%. The weights on

the outputs are introduced by including additional constraints to our basic DEA model (see

Thanassoulis, 2001).

Table 6 shows the summary results of applying the weights to the output variables in

the base model. As shown in the table, after introducing the output weights, firm F3 is no

longer on the efficient frontier and its allowed revenues decrease by 7.5% corresponding to

a $32.4 revenue reduction per customer. It is noteworthy that although firms F1 and F2



Table 6

Summary results—influencing output with fixed weights

Outputs with fixed weights Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

Efficiency score (%) 42.5 26 87.4 100.0 59.5

D score from base case (%) � 15.1 � 12.1 � 12.6 0 � 8.1

X-factor (%) 15.8 23.6 2.7 0.0 9.9

Implied X-factor (%) 8.0 8.0 2.7 0.0 8.0

Final X-factor (%) 8.6 8.4 3.6 1.0 8.8

OPEX in reference year

(�US$1000)

88,033 219,238 43,608 20,057 94,822

Accumulated required cost

savings (�US$1000)

100,568 245,074 22,382 2969 110,708

D accumulated required cost

saving (�US$1000)

� 1969 � 3952 15,928 0 4133

Accumulated allowed revenue

in rate period (�US$1000)

339,598 851,114 195,659 97,316 363,402

D accumulated allowed revenue

in rate period (�US$1000)

1969 3952 � 15,928 0 � 4133

As % of accumulated allowed

OPEX (in base case) (%)

0.6 0.5 � 7.5 0.0 � 1.1

$ Revenue increase (+)/decrease

(� ) per customer

3.38 3.95 � 32.43 0.0 � 6.07
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have lower efficiency scores than in the base case, they achieve a relatively small net gain

from the weights. The observed gain is due to the fact that in the revised model the 1%

frontier shift is applied to a lower efficient cost base while the firms’ X-factor is, despite a

nominal increase, still capped at 8%. However, a lower efficiency score for firm F5 means

that it faces an increase in effective X-factor up to the cap limit that results in a net loss for

the firm.

The results shown here indicate that while there is some potential for moderate gains by

the two least efficient firms, the negative effect on more efficient firms outweighs the gain.

The results from this example indicate that conflicting interest among the firms may

reduce the likelihood of influencing the base model in this direction. It should, however,

be pointed out that the magnitude of potential benefits and losses, and the number of

gainers and losers, is highly dependent on the composition of the companies comprising

the benchmarking sample.

4.4. Changing the firm through mergers and acquisitions

The changing structure of the electricity industry has prompted many utilities to

achieve efficiency improvements through mergers and acquisitions. From a strategic

perspective, mergers can also help utilities to reposition themselves in the market by

changing their scale of operations and reconfiguring their resources. However, mergers

and acquisitions involve two sources of concern for regulators that use benchmarking:

(i) transactions intended to influence the relative position of the firm without achieving

real efficiency gains and (ii) the shrinking number of firms and reduction in information

on which regulators base their analysis (Nillesen et al., 2001). The first type of merger



Table 7

Summary results—merger effects

Effects of merger between firms F3 and F5 Firm 1 Firm 2 Firm 4 Firms 3 and 5

Efficiency score (%) 67.3 42.7 100.0 91.5

D score from base case (%) 9.7 4.6 0 18.2

X-factor (%) 7.6 15.6 0.0 1.8

Implied X-factor (%) 7.6 8.0 0.0 1.8

Final X-factor (%) 8.5 8.6 1.0 2.7

OPEX in reference year (�US$1000) 88,033 219,238 20,057 138,430

Accumulated required cost savings

(�US$1000)

99,621 250,510 2969 54,506

D accumulated required cost saving

(�US$1000)

� 2916 1483 0 � 58,523

Accumulated allowed revenue in rate

period (�US$1000)

340,545 845,678 97,316 637,645

D accumulated allowed revenue in rate

period (�US$1000)

2,916 � 1,483 0 58,523

As % of accumulated allowed OPEX

(in base case) (%)

0.9 � 0.2 0.0 10.1

$ Revenue increase (+)/decrease

(�) per customer

5.01 � 1.48 0.00 49.95
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may be regarded as a special form of collusion to game the regulator’s incentive

scheme.11

In this section, we examine a case of ‘‘virtual’’ efficiency improvement achieved by the

merger of two firms. Table 7 shows the results when a frontier firm (F3) and a relatively

efficient firm (F5) merge to form a new entity.

Firms F1 and F2 exhibit higher efficiency scores relative to the base case due to the

reduction in the number of frontier firms. A higher score for F1 means that the firm’s X-

factor falls below the cap threshold and therefore benefits from the new higher efficiency

score. However, for firm F2, the higher efficiency score means that the 1% annual frontier

shift is applied to a higher cost base, while the firm’s X-factor remains capped despite the

higher efficiency scores.

A merger between firms F3 and F5 can result in 10.1% increase in allowed revenues

corresponding to $50 per customer during the rate period or $59 million in total. Although

a range of factors can influence a firm’s decision to merge or acquire, simple comparative

efficiency analysis can reveal the side benefits or losses associated with the decisions. This

type of analysis could indicate the premium a particular firm might be willing to pay

compared to that of other firms.
5. Discussion and conclusions

An increasing number of regulators have used benchmarking in periodic price controls

as part of the incentive-based regulation of natural monopolies. The primary reason for the
11 Collusion can also take the form of collaboration on the pace of cost saving effort among the firms but this

is beyond the scope of this study (see e.g. CPB, 2000).
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use of benchmarking has been that yardstick regulation encourages efficiency and reduces

reliance on the firms’ own information. However, as discussed in this paper, the use of

benchmarking can lead firms to pursue virtual rather than true performance improvements

by gaming the regulator’s benchmarking in a number of ways that are contrary to the

intentions of the scheme.

We showed how strategic behaviour in the context of benchmarking may lead to (i)

foregone efficiency improvements or dead-weight losses, (ii) welfare transfers from

customers to firms, and (iii) welfare transfers among firms. We also used numerical

examples to illustrate selected aspects of strategic gaming associated with regulatory

benchmarking and their effects. We show that the net effect of gaming can depend on the

method of translating efficiency scores into X-factors and the caps applied to them (i.e., the

extent to which the efficiency gap among the firms can or is to be closed in a given rate

period). We also showed the interrelationship between gaming by one firm and its effect

on the X-factors for other firms.

The following lessons can be drawn from our review of issues and examples:

� The allocation of costs and assets when distribution is unbundled from other utility

activities and the reliability of this information base for subsequent price controls are

both important. Regulators need to pay particular attention to increasing the reliability

of information through audits, technical studies, and comparison of cost patterns in

review vs. non-review periods.
� Regulators need to conduct sensitivity analyses of their chosen benchmarking approach

and data sets in order to identify the most influential variables and to assess the effects

of measurement errors and likely gaming.
� An important strength of DEA is the ability to accommodate multiple inputs and

outputs. Using models with a single cost input variable might increase the sensitivity of

results to changes in costs.
� Mergers are increasingly a source of concern for regulators and utilities. Both can use

benchmarking analyses to determine the effects of possible and actual mergers on the

firms in the sector and their implied X-factors. Such analysis can also help regulators to

design their policies towards separating virtual from actual efficiency gains in mergers.
� Regulators need to recognise the shortcomings of their chosen benchmarking methods

and to apply discretion and judgment in the use of results. For example, in order to

reduce reliance on a limited number of variables, regulators can use competing models

and average their results. In some instances, it may be preferable to simplify the process

by placing the firms in a few categories with similar X-factors.
� Finally, from a theoretical and methodological point of view, regulatory benchmarking

leaves considerable scope for improvement. Regulatory benchmarking therefore owes

much of its legitimacy to the wider regulatory framework and the implementation

process. Transparency of the benchmarking exercise and decision process together with

the public availability of underlying data and, combined with consultations and hearings,

can provide third party scrutiny and thus increase acceptability and reduce gaming.

Regulatory benchmarking does not eliminate the issue of asymmetric information on

firms’ costs and efficiency improvement effort as known under rate of return regulation.
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Rather, it adds new dimensions to this issue and the ways in which firms can behave

strategically. Countering strategic behaviour can partly be overcome by increasing data

accuracy and improving data collection procedures. The information requirement for

reliable regulatory benchmarking therefore appears to be higher than initially expected.

The continued efforts made by regulators using benchmarking to improve data quality are

testament to this fact. At the same time, regulated utilities need to conduct their own

benchmarking analysis in order to

� examine the effect of the regulator’s choice of method, variables, X-factors,
� analyse the effects of possible gaming by other firms and available future partners for

mergers and acquisitions, and
� evaluate benefits and losses of mergers involving own firm or competitors and to

convey their findings to regulators.
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