

Economic Analysis of Dry-Milling Technologies

by Rhys Dale Wally Tyner **Purdue University** DOE Grant # DE-FG36-04G014220

- We have developed a descriptive engineering (process) model to incorporate a fair amount of detail on costs and conversion efficiencies at each step of the production process.
- The model contains flexibility to enter certain key variables in more than one way; e.g., DDGS price can be a function of corn and SBM or independent

- The dry mill model is composed of several modules:
 - Variables and assumptions (3 pages)
 - Process
 - Equipment size and costs
 - Total fixed cost
 - Revenue and variable cost
 - Finance
 - Benefit cost

- The variable module is where users input all variable and assumptions - biological, mechanical, and economic - about the ethanol production process. The assumptions fall into three primary categories: technical process, economic assumptions, and parameters.
- The most important assumptions are the choicevariables. The yearly output and number of hours of operation per year directly affect the size of the equipment needed and the flow rate of operation.

• All cells are color coded for ease of use

Variable Color Coding					
Direct Input	Constant Input				
Calculation					
Trigger	Function Value				
Information and/or Description					
Flow Rate In	Flow Rate Out				
Flow Rate In = Out					
look up table					
Products & Bioenergy					

- Types of assumptions:
 - Plant operation
 - Conversion
 - Equipment (RTD, No., temperature)
 - Physical property
 - Solid percentages
 - Distillation/evaporation
 - Grain composition
 - Economic and price assumptions
 - Loan parameters

		•••• == -+•		lod		
Dry Mill Process Assumptions:				viou	el	
Plant Operation			Plant O	peratio	n	
	Excel		Assum	otions		
Plant Variable	Name	Value				
Name Plate Gallons per						
Year	tcap	40,000,000				
Actual Gal Produced per						
Year	cap	38,000,000	1			
Operational Hours per			If $D13 = 1$ the	en actual		
Day	hours	24	GPY = Capa	acity X	95%	
Operational Days per			If $D13 = 0$ the	en actual		
Year	days	365	GPY =	=	39,452,055	
Operational Hours per			with numb	ber of		
Year	ophours	8322	operation h	ours =	24	
			with numb	per of		
% Utilization	Utiliz	95%	operation c	lays =	360	
I TOULIELS & DIOCHCIESY						

ALL

Currently	Currently Using Function Price		Function Price			
1	EtOH Price = $f(gas)$	\$1.90	\$1.46			
160	Gasoline (cents/gallon)	P-value = 0	R2 = .62			
Currently	Using Manual Price	Manual Price	Function Price			
0	DDGS Price = f(SBM, corn)	\$60	\$60			
150	SBM (dollars/ton)	P-value = 0	Adj R2 = .73			
84	Corn (dollars/ton) P-value = 0					
Currently	Using Manual Price	Manual Price	Funtion Price			
0	Jet Cooker Price = f(Tcap)	\$100,000	\$118,531			
4000000 Total Capacity (mgy)						
Midwest Consortium for Biobased Products & Bioenergy						

- In the process module, yearly output of ethanol is converted to hourly flow rates using conversion efficiency rates and other assumptions. The per hour output is fed backwards through the processing modules to find the amounts and flow rates required for this level of production.
- Energy and water use is tracked in the process module.

	Yields						
	Input	Intern Pr	nediate oducts	Products			
	Corn	Starch	Glucose	CO2	Et	ОН	DDGS
	Pounds	Pounds	Pounds	Pounds	Pounds	Gallons	Pounds
Theoretical	1.00	0.75	0.83	0.41	0.43	0.06	0.25
Conversion	56.00	39.09	43.39	21.22	22.17	3.36	13.03
Actual Conversi on	56.00	39.09	41.23	17.14	17.91	2.72	17.75
Product / Input	100%	75%	79%	32.89%	34.	37%	34.06%

rgy

Products & Dioene

Avg. Utility Use / Gal of EtOH Produced				
Utility	Unit			
Energy	Thermal (Mbtu)	33,557		
	Electrical (kWh)		1.14	
Water	fresh (gal)	4.90		
	backset (gal)	1.22		
	Total (gal)	6.12		

- In the **equipment size and cost** module, the size of the equipment needed is calculated from flow rates, electrical and heating requirements, that vary with plant capacity.
- Tank and reactor sizing is estimated through use of total capacity flow rates and residence time (RTD).
- The estimated cost of individual pieces of equipment is calculated using their respective size estimates.

- In the **total fixed cost** module, the sum of equipment costs is used to calculate total fixed capital investment for the plant.
- Two methods were used to calculate total capital cost:
 - Fixed cost investment percentage (FCI)
 - Ratio of delivered equipment cost (RDE)
 - The RDE method works better for small plants between 10 and 40 mil. gal., and the FCI method is better for plants exceeding 65 mil. gal.
 - Between 40 and 65 mil. gal., a combination of the two approaches was used.

Description	FCI Cost Est.	RDE Cost Est.
Purchased Equipment	\$10,272,307	\$10,272,307
Pur. Equip Instillation	\$3,588,579	\$4,827,984
Instrumentation	\$4,216,580	\$3,698,031
Piping	\$3,274,578	\$6,985,169
Electrical	\$2,063,433	\$1,129,954
Buildings (service)	\$2,063,433	\$1,849,015
Yard Improvements	\$807,430	\$1,027,231
Service Facilities (instld)	\$6,190,299	\$7,190,615
Total Direct Capital Costs	\$32,476,639	\$36,980,306
Engineering & Supervision	\$3,364,293	\$3,389,861
Construction Expense	\$4,126,866	\$4,211,646
Legal Expense	\$807,430	\$410,892
Contractors Fee	\$807,430	\$2,259,908
Contingency	\$3,274,578	\$4,519,815
Total Indirect Capital Costs	\$12,380,597	\$14,792,122
Capital Cost Estimate	\$44,857,236	\$51,772,428

- In the revenue and variable cost module, the flow rates from the process module are used to calculate annual variable costs and input usage plus annual revenue and outputs.
- In the **finance** module, the fixed costs are combined with finance assumptions and annual revenue and variable costs to produce annual cash flows. Nominal financing flows are deflated to be compatible with the costs and returns, which are in real terms.
- The **benefit-cost** module calculates the return to equity under different assumptions.

Yearly Revenues							
Pr	Yearly Revenue						
EtOH:							
	denatured	\$1.46	gal	41,424,658	\$60,517,282		
	hydous	\$1.39	gal	41,267,840			
	anhydrous	\$1.46	gal	39,452,055			
DDGS:							
	wet	\$30.00	ton	603,607,399			
	dry	\$60.00	ton	257,696,990	\$7,730,910		
Other:							
	CO2	\$6.00	ton	248,795,775	\$746,387		
	Subsidies	\$0.00	gal	39,452,055	\$0		
Total Annual							
Revenue \$68,994,579							
Products & Bioenergy							

Financial Table

	Information			Calculations	
Loan Info:	Loan Years	15		Total Capital Costs	\$51,772,428
	Expected Life of Plant	25	(+)	Working Capital	\$7,765,864
	Years till Operational	3	(=)	Capital Invst	\$59,538,292
Loan Info:	Year (1) Invst / Total Invst	60%	(+)	Accrued Interest	\$2,582,567
	Year (2) Invst / Total Invst	40%	(=)	Total Cptl Invst	\$62,120,860
	Initial Equity / Capital Invst	40.0%	Lender Equity Requirement		\$24,848,344
	Initial Loan / Capital Invst	60.0%	Total Loan Ammount		\$37,272,516
	Sweep Pmnt / Profits	40%		Year 1	\$22,363,509
	Working Capital / Total Invst	15%		Year 2	\$14,909,006
Rates:	Discount	12.0%	Scheduled	An. Loan Pmnt	\$4,354,531
	Real Discount	8.7%	Pro	ofits (gross)	\$10,752,144
	Inflationary	3.0%		Net	\$6,397,613
	Interest	8.0%		Sweep Payment	\$2,559,045
	Real Interest	4.9%		other	\$3,838,568

The Dry Mill Ethanol Model: Capital Costs Comparisons

Capital Cost Estimates					
	DM Model E	stimates	BBI Estimates		
Nameplate Gallons	Total Fixed Cost	\$ / Gallon	\$ / Gallon		
100,000,000	103,500,000	1.04	1.05		
85,000,000	88,114,000	1.04	1.05		
65,000,000	72,746,000	1.12	1.15		
50,000,000	60,439,000	1.21	1.25		
40,000,000	51,772,000	1.29	1.35		
30,000,000	41,398,000	1.38	1.45		
20,000,000	30,813,000	1.54	1.65		
15,000,000	25,256,000	1.68	1.75		
10,000,000	19,297,000	1.93	1.95		

 With the estimates of total costs, variable costs, and revenue, the financing of the plant can be calculated. At different interest rates, loan terms, and sets of assumptions, the NPV, IRR, and cash flows are computed.

Future Activities

- Our future work will consist of refining the base version of the model, building the module(s) for evaluating new technologies, and incorporating uncertainty into the model by using input distributions of key uncertain variables and conducting Monte Carlo simulation to obtain the inherent uncertainty in key output variables.
- A draft user's guide for the model including an explanation of all the equations is being produced. It will be checked by our colleagues.

