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Dynamic Positive Equilibrium Problem

Abstract

The Dynamic Positive Equilibrium Problem (DPEP) is a methodology for dealing with

time series about economic agents’ decisions, regardless of the amount of available

information.  The approach is articulated in three phases, as in the static counterpart

Symmetric Positive Equilibrium Problem (SPEP), with the variant that it must be

preceded by the estimation of the equation of motion which characterizes a dynamic

model. Furthermore, the definition of marginal cost in the DPEP model is different from

the same notion in the static SPEP.  In this paper, the DPEP approach was applied to a

panel data dealing with annual crops from California agriculture for a horizon of eight

years.  The dynamic character of the DPEP model is based upon then assumption of

output price adaptive expectations that follows a Nerlove-type specification.

Introduction

The methodology of Symmetric Positive Equilibrium Problem (SPEP) presented by Paris

and Howitt (2000) is extended in this paper to include a dynamic structure.  Dynamic

models of economic problems can take on different specifications in relation to different

sources of dynamic information.  When dealing with farms whose principal output is

derived from fruit orchards, for example, the equation of motion is naturally represented

by the difference between standing orchard acreage in two successive years plus new

planting and minus culling.  In more general terms, the investment model provides a

natural representation of stocks and flows via the familiar investment equation

(1)                       K K I Kt t t t= + −− −1 1δ
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where Kt  represents the capital stock at time t , It  is the investment flow at time t , and δ

is the depreciation rate.  This dynamic framework, expressed by a relevant equation of

motion, becomes operational only when explicit information about investment, initial

stock, and depreciation is available.  Unfortunately, information about new plantings and

culling rarely exists.

Annual crops are also dynamically connected through decisions that involve price

expectations and some inertia of the decision making process.  We observe that farmers

who produce field crops, for example, will produce these activities year after year with an

appropriate adjustment of both acreage and yields. In this paper, therefore, we consider

economic units (farms, regions, sectors) that produce annual crops. That is, production

activities that, in principle, may have neither technological antecedents nor market

consequences but that nevertheless are observed to be connected through time.  We

assume that the underlying dynamic connection is guided by a process of output price

expectations.

In a static framework, the SPEP specification takes on the following structure:

(2) Ax b+ ≤ββ , y 0≥

(3) x x≤ R , λλ ≥ 0

(4)   ′ + ≥A y pλλ , x 0≥

(5) y r≥ , ββ ≥ 0
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and the associated complementary slackness conditions

(6)   ′ − − =y b Ax 0( )ββ

(7)         ′ − =λλ ( )x x 0R

(8)             ′ ′ + − =x A y p 0( )λλ

(9)            ′ − =ββ ( )y r 0

where b is the vector of available resources, xR is the vector of realized output levels, p

is the vector of market output prices, r  is the vector of market prices of resources, A is

the matrix of fixed technical coefficients.  The vectors x  and ββ are measured in output

and input units, respectively, while the vectors y  and λλ  are measured in monetary terms.

This specification does not imply but neither excludes an explicit optimization

assumption about economic behavior.  The interpretation of constraints (2) through (5) is

as follows: Ax b≤ − ββ states the physical quantity equilibrium condition on inputs

according to which the demand of limiting resources must be less-than-or-equal to the

effective supply of those resources.  The quantity b − ββ is interpreted as the effective

supply because, while b is a vector of fixed resource availability, the vector ββ acts as a

buffer parameters between the actual demand and the fixed input availability. This

implies that a positive shadow price of the limiting inputs may result even though the

demand of limiting resources is strictly less than its available nominal supply, that is

Ax b< .  The vector ββ is also the dual variable of constraint (5).  When ββ > 0, the dual
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variable y  of limiting resources is equal to the input market price, r . Constraint (4) states

the economic equilibrium condition according to which the marginal cost of producing

output, ( )′ +A y λλ , must be greater-than-or-equal to marginal revenue, p.

The Dynamic Framework

The specification of a dynamic framework based upon the structure of problem (2)-(5)

begins with the assumption that the output price expectations of the decision maker are

governed by an adaptive process such as:

(10)           p p p pt t t t
* * *( )− = −− − −1 1 1ΓΓ

where the starred vectors are interpreted as expected output prices and ΓΓ  is a diagonal

matrix of unrestricted elements.  In general, the elements of the ΓΓ  matrix are required to

be positive and less than 1 in order to guarantee stability of the difference equation in an

infinite series of time periods.  The case discussed in this paper, however considers a

finite horizon of only a few years and no stability issue is at stake.  It is as if we were to

model an arbitrarily small time interval of an infinite horizon.  Within such a small time

interval, the relation expressed by equation (10) can be either convergent or explosive

without negating the stability of the infinite process. A further assumption is that the

expected output supply function is specified as follows:

(11)              x Bp wt t t= +*
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where B is a positive diagonal matrix and w t  is a vector of intercepts.  Then, equation

(10) can be rearranged as

(12)        ΓΓ ΓΓp p [I pt t t− −= − −1 1
* *]

while, by lagging one period the supply function, multiplying it by the matrix [I − ΓΓ],

and subtracting the result from equation (11), we obtain

(13)                 x [I x B{p [I p } w [I wt t t t t t− − = − − + − −− − −ΓΓ ΓΓ ΓΓ] ] ]* *
1 1 1

 = +−B p vΓΓ t t1

where v w [I wt t t≡ − − −ΓΓ] 1. Hence, the equation of motion involving annual crops and

resulting from the assumption of adaptive expectations for output prices is

(14)                    x [I x B p vt t t t= − + +− −ΓΓ ΓΓ] 1 1 .

It is important to emphasize that this equation of motion is different from the more

traditional dynamic relation where the state variable is usually interpreted as a stock and

the control is under the jurisdiction of the decision maker.  The equation of motion (14)

emerges from an assumption of adaptive expectations about output prices.  Prices are not

under the control of the decision maker and, furthermore, the state variable is not a stock

but a flow variable as it represents yearly output levels.  Nevertheless, relation (14) is a

legitimate equation of motion that relates entrepreneur’s decisions from year to year.
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Maximum Entropy Estimation of the Equation of Motion

Before proceeding further in the development of the Dynamic Positive Equilibrium

Problem, it is necessary to produce an estimate of the matrices B and ΓΓ  that define the

equation of motion.  We assume that the available information on realized output

quantities, xRt , and output prices, pt , spans the horizon of T periods.  The maximum

entropy approach employed in this paper to estimate the equation of motion is a variant

of the GME approach proposed by Golan et al. (1996).  This special case, introduced by

van Akkeren and Judge (1999), specifies the support intervals and the number of discrete

points within the sample using only the available sample information.  When feasible,

this variant of the GME approach eliminates the researcher’s subjective selection of the

discrete number of probabilities and the support’s end points.  It removes, therefore, the

often contentious  aspect associated with the original GME formulation.  In particular, let

us decompose the equation of motion in two parts: the average relation and an associated

equation defined in deviations from the average relation:

(15)                x [I x B p vR R= − + +
− −ΓΓ ΓΓ] , 1 1

(16)       (x x ) [I (x x ) B (p p ) (v v)Rt R R t R t t− = − − + − + −− − − −ΓΓ ΓΓ] , ,1 1 1 1

where the overhead bar indicates the sample average with respect to the index t. For

notational convenience we also define dx (x x ) dx (x x )t Rt R t R t R≡ − ≡ −− − −, , ,1 1 1 ,

dp (p p ) dv (v v)t t t t− − −≡ − ≡ −1 1 1 , .
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Following the GME approach, each of the parameters to be estimated is expressed

as the convex linear combination of the elements of a support matrix, say Z , where the

number of support points is taken to be equal to the number of sample observations.  In

our case, the parameters to be estimated are the diagonal matrices ΓΓ  and B and the

vector vt . Hence,

(17)                

Γ Γ Γj j j j s
s

T

j j s

j j B j j s
s

T

D j j s

t v t s
s

T

v t s

P Z

B P Z

v P Z

, , , , , , ,

, , , , , , ,

, , , ,

=

=

=

=

=

=

∑

∑

∑

1

1

1

where P PF j j s B j j s, , , , , ,,  and Pv t s, ,  are nonnegative weights for each of the estimated

parameters that must add up to unity.  In the context of maximum entropy, these weights

are regarded as probabilities.

The variant of the GME methodology consists in using the sample observations to

define the  support matrices Z  and the number of discrete supports as follows:

(18)                

Z dx dx

Z dx dp

Z dx

B j j s j s j s

j j s j s j s

v j s j s

, , , , ,

, , , , ,

, , ,

=

=

=

−

−

1

1Γ

The relevant ME specification for estimating the equation of motion can,

therefore, be stated as finding positive probabilities P P PB vj j s j j s j s( , , ), ( , , ), ( , )Γ  that



8

(19)     max ( ) ( , , ) log( ( , , )) ( , , ) log( ( , , ))
, .

H j j s j j s j j s j j sB v B B
j s j s

P ,P ,P P P P PΓ Γ Γ= −∑ − ∑

−∑ P Pv v
j s

j s j s( , ) log( ( , ))
,

subject to

(20)                   x [I x B p vR R= − + +
− −ΓΓ ΓΓ] , 1 1

(21)         (x x ) [I (x x ) B (p p ) (v v)Rt R R t R t t− = − − − − + − − − + −ΓΓ ΓΓ] , ,1 1 1 1

where the ΓΓ  and B matrices are replaced by their corresponding expressions ΓΓ = P ZΓ Γ

and B P Z= B B together with the adding-up conditions on the probabilities. Similarly, the

intercept terms vt  are replaced by their corresponding expressions v Pv Zvt t t= . The

estimated equation of motion calibrates the sample observations exactly.

Phase 1 of DPEP: Estimation of the Marginal Costs

Phase 1 of the Dynamic Positive Equilibrium Problem begins with a specification of the

optimization problem for the entire horizon from t T= 1,...,  and the statement of a salvage

function.  We assume that the economic agent wishes to maximize the discounted stream

of profit (or net revenue) over the horizon T. After T periods it is assumed that the

objective function consists of the discounted value of profit from period T  to infinity,

which is realized under a condition of steady state.  Analytically, then, the Dynamic

Positive Equilibrium Problem takes on the following specification:
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(22)        max { )} / ( ) { }( )V e dt t
t

T

t t t
t

T
= ′ − ′ − + + ′ − ′

=

− ∞ −∑ ∫p x r (b p x r (Ax)
1

11ββ ρ τρτ

subject to

(23)           A x bt t t t+ ≤ββ t T= 1,...,

(24)             x [I ]x B p vt t t t= − + +− −
ˆ ˆ ˆΓΓ ΓΓ1 1 t T= 1,..., .

Constraint (23) expresses the technological requirements for producing the vector of crop

activities x t  given the limiting resource availability bt .   Constraint (24) expresses the

price expectations of the economic agent through an equation of motion that renders the

objective of producing annual crops a real dynamic problem.  The objective function is in

two parts.  The first component expresses the discounted profit over the horizon T.  The

second component is the salvage function where the absence of any time subscript

indicates the steady state stream of profit. The salvage function can be stated more

conveniently as { } { }′ − ′∫ = ′ − ′∞ − −p x r (Ax) p x r (Ax)T
Te d eρτ ρτ ρ  or, in order to relate it to

the discrete time horizon T, { } { }′ − ′ ≡ ′ − ′−
+ + + + +

−p x r (Ax) p x r (A x )ρ ρρ ρe eT
T T T T T

T
1 1 1 1 1 .

With these stipulations, the Lagrangean function of problem (22)-(24) is stated as

(25) L et t
t

T

t t t
t

T T T T T
T= ′∑ − ′ − + + ′ − ′

=

−
+ + + + +

−{ )} / ( ) { }( )p x r (b p x r (A x )
1

1
1 1 1 1 11ββ ρ ρ ρ

+ − − ′ + − + + − ′
=

− −
=

+

∑ ∑( {[ }b A x ) y I ]x B p v xt t t t t
t

T

t t t t t
t

T

ββ ΓΓ ΓΓ λλ
1

1 1
1

1

.

The corresponding KKT conditions are
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(26)        
∂
∂

= + − ′ − + − ≤−
+

L

t
t

t
t t t tx

p A y 0/ ( ) [ ]1 1
1ρ λλ ΙΙ ΓΓ λλ

(27)       
∂

∂
= − ′ − =

+
+ + +

−
+

L
e

T
T T T

T
Tx

p A r 0
1

1 1 1 1( )ρ ρ λλ

(28)         
∂
∂

= + − ≤−L

t
t

t
tββ

r y 0/ ( )( )1 1ρ

(29)        
∂
∂

= − + + − =− −
L

t
t t t tλλ

ΓΓ ΓΓ[I ]x B p v x 01 1

(30)       
∂
∂

= − − ≥L

t
t t t ty

b A x 0ββ .

This discrete dynamic problem can be solved, year by year, using a backward solution

approach on the system of KKT conditions (26)-(30).    The key to this strategy is the

realization that the equation of motion calibrates exactly the sample information for any

year, that is, x [I ]x B p vR t R t t t, ,
ˆ ˆ ˆ ˆ= − + +− −ΓΓ ΓΓ1 1  and, therefore, the left-hand-side quantity

xR t,  can replace the corresponding right-hand-side expression.  In other words, we can

equivalently use the available and contemporaneous information about the economic

agent’s decisions.  Furthermore, the costate variable λλT +1 for the time period outside the

horizon is equal to the derivative of the salvage function, that is

λ̂λT T T T
Te+ + + +

−= − ′1 1 1 1(p A r )ρ ρ . One needs knowledge of the steady state output and input

prices and of the technical coefficients at time T+1. Then, at time T, the equilibrium

problem to be solved is composed by the following structural relations

(31)       A x bT T T T+ ≤ββ y 0T ≥
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(32)       x x [I ]x B p vT R T R T T T≤ = − + +− −, ,
ˆ ˆ ˆ ˆΓΓ ΓΓ1 1 λλT ≥ 0

(33)        ′ + ≥ + − +A y p [IT T T T
T

Tdλλ ΓΓ λλ/ ˆ ]ˆ
1 x 0T ≥

(34)        y rT T
Td≥ / ββT ≥ 0

and by the associated complementary slackness conditions. The symbol dt t= + −( )1 1ρ  is

the discount factor. Knowledge of the realized levels of output at time t and of the vector

of costate variables λ̂λ t+1, estimated  at time t+1, allows the solution of the dynamic

problem as a sequence of T equilibrium problems.  Hence, the dynamic linkage between

successive time periods is realized through the vector of costate variables λλ t . In this way,

the equilibrium problem (31)-(34) can be solved backward to time t=1 without the need

to specify initial conditions for the vector of state variables x0 and the price vector p0.

As we indicated previously, there is the need to specify a terminal condition in the form

of a salvage function. This dynamic problem arises exclusively from the assumption of

adaptive price expectations. Given the DPEP as stated above, the costate variable λλ t  does

not depend explicitly upon the state variable x t .  This implies that the positive  character

of the problem, with the concomitant use of the realized levels of activity outputs, avoids

the usual two-part solution of a dynamic problem where the backward solution is carried

out in order to find the sequence of costate variables λλ t  and the forward solution is

devoted to finding the optimal level of the state variables x t .  In the context specified
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above, the solution regarding the state variable x t  is obtained contemporaneously with

the solution of the costate variable λλ t .

The objective of DPEP during phase 1, therefore, is to solve T equilibrium

problems starting from the end point of the time horizon, that is from t T T= −, ,..., ,1 2 1,

and having the following structure:

(35) min{ }′ + ′ + ′ + ′v y v v x vP t t P t t D t t D t t1 2 1 2λλ ββ

subject to

(36) A x v bt t t P t t+ + =ββ 1

(37) x v xt P t R t+ =2 ,

(38) ′ + = + − ++A y p [I vt t t t
t

t D tdλλ ΓΓ λλ/ ˆ ]ˆ
1 1

(39) y r vt t
t

D td= +/ 2 .

The objective function is the sum of all the complementary slackness conditions. A

solution of the equilibrium problem is achieved when the objective function reaches the

zero value.  The principal objective of phase 1 is the recovery of the costate variables for

the entire horizon and of the dual variables for the structural constraints to serve as

information in the estimation of the relevant cost function during the next phase.

 The fundamental reason for estimating a cost function to represent the decision

process is to relax the fixed-coefficient technology represented by the At  matrix and to

introduce the possibility of a more direct substitution between products and limiting
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inputs.  In other words, the observation of output and input decisions at time t provides

only a single point in the technology  and cost spaces.  The process of eliciting an

estimate of the latent marginal cost levels and the subsequent recovery of a consistent

cost function which rationalizes the available data is akin to the process of fitting an

isocost through the observed output and input decisions.

Phase 2 of DPEP: Estimation of the Cost Function

By definition, total cost is a function of output levels and input prices.  In a dynamic

problem, the total cost function is defined period by period as in a static problem and

represented as C t Ct t t t t( , , ) ( , )x y x y≡  (see Stefanou).  The properties of a cost function in

a dynamic problem follow the same properties specified for a static case: It must be

concave and linearly homogeneous in input prices in each time period.  The functional

form selected to represent the inputs is a Generalized-Leontiev specification with

nonnegative and symmetric terms.  For the outputs, the functional form is a quadratic

specification in order to avoid the imposition of a linear technology.  Furthermore,

sufficient flexibility must be allowed in order to fit the available empirical data.  For this

reason, an unrestricted intercept term is added to the specification.  Finally, we must

guarantee that the cost function is homogeneous of degree one in input prices.  All these

considerations lead to the following functional form:
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(40) Ct t t t t t t t t t t t t( , ) ( ) ( ) / / /x y u y f x u y x Q x y S y= ′ ′ + ′ ′ + ′2 1 2 1 2 .

where u  is a vector of unit elements.  Many different functional forms could be selected

in such a way to satisfy the properties of a cost function. The matrix Q  is symmetric

positive semidefinite while the S matrix is symmetric with nonnegative elements on and

off the main diagonal.

The marginal cost function at time t is the derivative of equation (40) with respect

to the output level at time t, that is

(46)
∂
∂

= ′ + ′ = ′Ct

t
t t t t t t tx

u y f u y Q x A y( ) ( )

whereas, by Shephard lemma, the limiting input derived demand functions are

(42)
∂
∂

= ′ + ′ + = = −−

Ct

t
t t t t t t t t t t ty

f x u u x Q x S y A x b
y

( ) ( ) / /
/2 1 2

1 2∆ ββ .

The matrix ∆
y−1 2/  is diagonal with elements of the vector yt

−1 2/ on the diagonal.

Notice that there is a significant difference between the marginal cost of the static

equilibrium problem and the short-run (period by period) marginal cost of the dynamic

equilibrium problem.  If one considers the static equilibrium problem formulated in

model (2)-(5), the marginal cost is given in relation (4) as MC( )x,y A y≡ ′ + λλ .  In other

words, without a time dimension, the marginal cost is equal to the sum of the marginal

cost attributable to the limiting inputs, ′A y , plus the variable marginal cost attributable to

the level of outputs, λλ .   In the dynamic context elaborated above, the Lagrange
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multiplier λλ t  assumes the meaning of a costate variable and signifies the marginal

valuation of the state variable xt  and its dependence on the entire horizon, that is,

λλ ΓΓT n
s

T n s T n s T n s
s

n

− − + − + − +
=

+
= − − ′∑ [I p A y )] (

0

1
, where n T= −1 0, ,... .   In a dynamic context,

therefore, the costate variable λλ t  cannot be used to define the period-by-period marginal

cost (as done in a static equilibrium problem where the symbol λλ  is interpreted simply as

variable marginal cost) because it incorporates the long-run notion of a trajectory

associated with a multi-period horizon.   In the dynamic equilibrium problem depicted

above, the period-by-period marginal cost is thus defined as MCt t t t t( , )x y A y≡ ′ , as

deduced from relation (33).

The objective of phase 2 is to estimate the parameters of the cost function given in

equation (40), f Qt t,  and St .  This estimation will be performed using the Kullback-

Leibler criterion known also as the cross-entropy formalism. Economic theory requires

that the Qt  matrix be symmetric positive semidefinite.  In order to guarantee this

condition during the estimation process, two approaches based upon the Cholesky

factorization can be used.  The following specification

(43) Q L D Lt t t t= ′

allows the estimation of a semidefinite matrix if the data support this structure. The Lt

matrix is a unit lower triangular matrix and Dt  is a diagonal matrix with nonnegative

elements.  It can be shown that the Qt  matrix is positive semidefinite (definite) if and
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only if the diagonal elements of Dt  are nonnegatine (positive) (see Lau).  These diagonal

elements are called the Cholesky values. This first specification of the Cholesky

factorization is computational intensive.  Hence, if a researcher wishes to make the

sufficient assumption that the Qt  matrix is positive definite, a computationally more

saving structure of the Cholesky factorization can be implemented.

Following Golan et al., all the parameters to be estimated will be defined as

convex combinations of a corresponding set of predetermined support values and where

the weights are regarded as probabilities. Hence, it is assumed that for each ( , )j j ′

parameter

(44) L Z j j s P j j sjj t L t
s

L t′ = ′ ′∑, , ,( , , ) ( , , ) ,                j j J, , ,′ = 1 K

(45) D Z j j s P j j sj j t D t
s

D t, , , ,( , , ) ( , , )= ∑ , s S= 1, ,K

where ZL t,  and ZD t,  are the matrices of the known support values for the probability

distributions of the Lt  and Dt  matrices, respectively, while PL t,  and PD t,  are the

corresponding probability matrices.  In matrix notation, equations (44) and (45)

correspond to L Z Pt L t L t= , ,  and D Z Pt D t D t= , , , respectively, where the multiplication is

performed only with respect to the index s , s S= 1, ,K .  A similar specification involves

the vector ft  and the matrix St , that is f Z Pt f t f t= , ,  and S Z Pt S t S t
= , ,

.
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The Kullback-Leibler criterion can be stated as the problem of minimizing the

distance between two probability distributions where one of the distributions represents

conditional or a priori  information.  Suppose, therefore, that

P ,P ,P ,PL
C

D
C

f
C

S
Cj j s j j s j s i i s( , , ) ( , , ) ( , ) ( , , )′ ′  represent conditional (or a priori) information

about the corresponding parameters. The Kullback-Leibler criterion is then to find

positive values of all the posterior probabilities, P P P PL D f Sj j s j j s j s i i s( , , ), ( , , ), ( , ), ( , , )′ ′ ,

such that, at time t

(46)        min ( , , , ) ( , , ) log( ( , , ) ( , , )),
, ,

KL j j s j j s j j sLt Dt ft St Lt Lt L t
C

j j s

P P P P P P P= ′ ′ ÷ ′−
′

∑ 1

+ ÷ −∑P P PDt Dt D t
C

j s

j j s j j s j j s( , , ) log( ( , , ) ( , , )),
,

1

      

+ ÷

+ ′ ′ ÷ ′

−

−
′

∑

∑

P P P

P P P

ft ft f t
C

j s

St St S t
C

i i s

j s j s j s

i i s i i s i i s

( , ) log( ( , ) ( , ))

( , , ) log( ( , , ) ( , , ))

,
,

,
, ,

1

1

subject to

(47)         ′ = ′ + ′A y u y f u y Q xt t t t t t R tˆ ( ˆ ) ( ˆ ) ,

         = ′ + ′ ′( ˆ ) ( ˆ )( )( )( ) ,u y Z P u y Z P Z P Z P xt ft ft t Lt Lt Dt Dt Lt Lt R t

(48) A x f x u u x Q x S y
yt R t t t Rt t Rt t t, ˆ

/( ) ( ) / ˆ/= ′ + ′ + −2 1 2
1 2∆

           = ′ + ′ ′ + −(( ) ) ( ( )( )( ) ) / ( )ˆ
ˆ

/
/Z P x u u x Z P Z P Z P x Z P y

yft ft Rt Rt Lt Lt Dt Dt Lt Lt Rt St St t2 1 2
1 2∆

where the symbol ( )÷  represents an element-by-element ratio.  Given the time horizon

t T= 1,..., , the a priori probabilities at time t = 1 can be taken as the uniform distribution.



18

The maximum entropy probabilities estimated at time t=1 become the prior (or

conditional) probabilities at time t = 2, and so on.  In this way, the parameters of the cost

function in any given year are estimated under the requirement that they differ the least

from the estimates of the previous year.

In the above formulation, the total marginal cost ′A yt tˆ , the limiting input demand

A xt R t, , the realized level of activities xR t, , and the shadow prices of limiting inputs ŷt ,

are known elements of the specification.  The parameters to be estimated are the

probabilities, P P P PLt Dt ft St, , , .  The solution probabilities of problem (46)-(48) allow the

recovery of all the parameters of the total cost function, f Qt t, , and St .

Phase 3 of DPEP: Calibration and Policy Analysis

The estimated cost function can now be used to replace the marginal cost levels and the

demands of inputs in the equilibrium problem of phase 1.  This replacement assures the

calibration of the model, liberates the specification from a fixed-coefficient technology,

and allows direct substitution among outputs and inputs.  At this stage, therefore, it is

possible to implement policy scenarios based upon the variation of output and input

prices.

The structure of the calibration DPEP  is given below.   With the knowledge of

the costate variables, λ̂λ t  and λ̂λ t+1 from the solution of the DPEP obtained in phase 1, the
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following specification calibrates the solution of the output decisions and the input dual

variables for any period:

(49) min { }
,

, , ,
x,y, v

v y v x v
ββ

ββ′ + ′ + ′P t t D t t D t t1 1 2

subject to

(50) (ˆ ) ( ˆ ) / ˆ
/

/
,′ + ′ + + + =−f x u u x Q x S y v byt t t t t t t t P t t2 1 2

1 2
1∆ ββ

(51) ( )ˆ ( ) ˆ / ˆ ]ˆ ˆ
,′ + ′ = + − − +−

+u y f u y Q x p [I vt t t t t t
t

t t D td 1
1 1ΓΓ λλ λλ

(52) y r vt t
t

D td= +−/ ,
1

2 .

The use of the costate values obtained during phase 1 is required by the necessity

of eliminating the constraint on the decision variables, x xt R t≤ , , which were used in the

phase 1 specification precisely for eliciting the corresponding values of the costates.  As

observed above, the costate variables are the dynamic link between any two periods and

their determination requires a backward solution approach.  If we were to require their

measurement for a second time during the calibration phase, we would need to add also

the equation of motion in its explicit form, since the constraint x xt R t≤ ,  would no longer

be acceptable.  In this case the T problems would be all linked together and ought to be

solved as a single large-scale model.  The calibration phase, therefore, is conditional upon

the knowledge of the costate variables obtained during phase 1 and involves the period-

by-period  determination of the output decisions and dual variables of the limiting inputs.
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Given the dynamic structure of the model, a policy scenario becomes a prediction

at the end of the T-period horizon .  All the model components at period T are known and

the researcher wishes to obtain a solution of the Dynamic Positive Equilibrium Problem

for the T+1 period.  The parameters of the cost function are assumed constant and equal

to those at time T.  The costate variables at times T+2, and T+1, λ̂λT +2 ,, λ̂λT +1 are taken to

be equal to the steady state marginal values of the salvage function.  The remaining

parameters, b rT T+ +1 1,  and pT +1 will assume the value of interest under the desired policy

scenario.

The relevant structure of the dynamic positive equilibrium problem during the

policy analysis phase takes on the following specification:

(53) min { }, , ,
x,y, ,v

v y v x v
ββ

ββ′ + ′ + ′+ + + + + +P T T D T T D T T1 1 1 1 1 1 2 1 1

subject to

(54) (ˆ ) ( ˆ ) / ˆ
/

/
,′ + ′ + + + =+ + + + + + + + + +−f x u u x Q x S y v byT T T T T T T T P T T1 1 1 1 1 1 1

1 2
1 1 1 12 1 2∆ ββ

(55) ( )ˆ ( ) ˆ / ˆ ]ˆ ˆ
,′ + ′ = + − − ++ + + + + + + + +u y f u y Q x p [I vT T T T T T

T
T T D Td1 1 1 1 1 1 2 1 1 1ΓΓ λλ λλ

(56) y r vT T
T

D Td+ + += +1 1 2 1/ , .

  Projected policy prices, either on the output or input side, will induce responses in

the output and input decisions which are consistent with the process of output price

expectations articulated in the previous sections.
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An Application of DPEP to California Agriculture

California’s agriculture is divided in twenty one regions.  We have selected a region of

the Central Valley that produces seven annual crops: rice, fodder crops, field crops,

grains, tomatoes, sugar beets, and truck crops.  Eight years of reporting are available from

1985 to 1992.  Three limiting inputs are also recorded: land, water and “other” inputs.

The available information is given in table 1 and deals with total availability of limiting

inputs, their prices, total realized production and the associated prices.  A technical

coefficient matrix was defined in terms of input per unit of output.

The first step of the DPEP procedure requires the estimation of the diagonal

matrix of output price expectations, ΓΓ .  The estimation was performed by means of a

maximum entropy procedure with “endogenous”  probability supports as described

above.   The estimate of ΓΓ  is given in Table 2.  Some of the coefficients are negative but,

as explained above, they are admissible estimates of a sufficiently short horizon of eight

periods.  No stability properties are violated within the context of this example.

The second step of the DPEP approach requires the estimation of the dynamic

equilibrium problem (35)-(39) using a backward solution as explained above.  For

implementing this phase, a discount rate of 3 percent was selected.  We have

experimented also with discount rates that varied from 1 to 9 percent without detecting

any significant shift in the estimation results.
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The parameters of the cost function ( Qt , St , and ft) were estimated by the

Kullback-Leibler cross-entropy approach for the years 1985-1991.  The year 1992 was

kept in reserve in order to measure the prediction error associated with the assumption of

no structural change between the year 1991 and 1992. Notice that the parameters of the

cost function were estimated for each year. In this case, therefore, the specification of the

support values could not follow the suggestion of van Akkeren and Judge because it does

not apply when only one observation is available.  Hence, the original GME approach

was adopted for the support matrices Z Z ZD L S, ,  and Z f .  In particular, the supports for

the ZD  matrix were defined as the product of a vector of weights w1
1 0 1 5 3= ( , . , )  and a

parameter par j mc j xRj( ) ( ) /= , where mc(j) is marginal cost.  The supports for the ZL

matrix were defined as the product of a vector of weights w2
1 2 5 0 2 5= −( . , , . ) and the same

parameter par j( ) .  The supports of the matrix ZS  were defined as the product of the

weights w1
1 and the parameter b i( ), the i-th input availability.  Finally, the supports of the

matrix Z f  were defined as the weights w2
1 .

The estimate of the Q  matrix for 1991 in the cost function is given also in table 2.

The off diagonal coefficients of this matrix are rather small relative to their diagonal

counterparts indicating a limited degree of substitutability between pairs of the seven

crops.  It is possible to compute the associated matrix of supply elasticities by inverting

the implicit supply function given by the marginal cost function. The estimated matrix
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turned out to be positive definite although the approach allowed the estimation of a

positive semidefinite matrix.

Table 3 presents the estimate of the matrix S of limiting inputs for 1991 in the

cost function.   The associated matrix of derived demand elasticities indicates that land is

marginally elastic in this agricultural region.  Allen and Morishima elasticities of

substitution are also given in table 3.  The matrix S is positive definite.

Table 4 presents the S matrices from 1985 to 1991.  It is remarkable to notice

how similar these matrices are, indicating that during the period 1985-1991 there were no

significant structural changes.  In order to aid in the evaluation of these matrices the

corresponding eigenvalues are given along with the associated condition numbers.  The

eigenvalues show a robust stability of these matrices as do their condition numbers (the

ratio of the largest to the smallest eigenvalues).

The Q  matrices are of dimension (7 by 7) and their reporting for the seven years

would require several pages.  In order to avoid such a visual chaos we present their

eigenvalues  and condition numbers which, again, show a remarkable stability throughout

the time interval under study.  We wish to recall that the estimation of these matrices ( Q

and S) was performed by means of the Kullback-Leibler cross-entropy ratio which

allows to minimize the deviation between two probability distributions.  In this case, the
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minimum deviation translates into a minimum distance between two successive pairs of

matrices, as illustrated by the results of table 4.

The empirical results from the estimation of the cost function have indicated only

small variations from year to year of the Qt  and St matrices.  Thus, an alternative

estimation procedure (not currently pursued in this version of the paper) would assume

that no technical change occurred during the 8-year horizon.   This assumption implies

the constancy of the Q  and S matrices.   In other words, only one set of Q  and S

matrices would be estimated and the endogenous variant of the GME approach could be

implemented.

The results of phase 3 contain two parts. The first part deals with the verification

that indeed the DPEP methodology calibrates the output decisions and land allocations

within the time period of 1985-1991.  The second part consist in a prediction of output

decisions and land allocation for 1992 using the cost function of 1991. Table 5 and table

6 show that the calibration goal is achieved within very precise limits.  The prediction

exhibits an error that varies from 2 to 20 percent in the case of the output decisions and

from zero to 29 percent in the case of the shadow prices of limiting inputs. The average

percent error for the prediction of the output decisions is 12.13 while the average percent

error for the shadow input prices is 9.66.  It may be possible that a different functional

form of the cost function could lead to a smaller prediction error.
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Finally, table 6 presents the estimates of the costate variables associated with the

equation of motion involving price expectations.  Their values tend to increase as we

move toward the beginning of the time period because  their structure is given by the

following  expression: λλ ΓΓT n
s

T n s T n s T n s
s

n

− − + − + − +
=

+
= − − ′∑ [I p A y )] (

0

1
.  One costate value in

each year is equal to zero by virtue of the degeneracy built into the primal equilibrium

problem (see relations (36) and (37)).

Sensitivity Analysis Involving the Support Intervals

A well-known limitation of the original GME approach is given by its dependence upon

the researcher’s subjective specification of the support intervals of the corresponding

probability distributions.  As a consequence, the parameter estimates depend crucially

upon the pre-selected support values.  Furthermore, given the structure of the maximum

entropy, there is no possibility of making general statements about the direction of

response of the estimated parameters in relation to either an enlargement or a shrinkage

of the support intervals (see Caputo and Paris).  It remains, therefore, to judge the

appropriateness of the supports’ choice case by case.  Finally, we must recall that a

quantitative analysis is always characterized by two stages: estimation and prediction. A

sensitivity analysis involving some or all the support intervals may have a differential

impact upon the parameter estimates and the predictions.
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With these considerations in mind, we re-estimated the empirical equilibrium

problem using two additional sets of supports.  The first of these sets shrinks the support

intervals by reducing the weights from w1
1 0 1 5 3= ( , . , )  to w1

2 0 1 2= ( , , ) and from

w2
1 2 5 0 2 5= −( . , , . ) to w2

2 1 0 1= −( , , ).  The results of this shrinkage of the support intervals

are presented succinctly in Table 7.

Let us consider the S91 matrix first.  Only nonnegative weights w1
2 0 1 2= ( , , ) were

involved in the estimation of the elements of this matrix.  We notice that to a 33 percent

reduction in the support intervals there corresponds a reduction of parameter estimates of

about 30 percent (except for the element land-land).  The eigenvalues of the St  matrices

are about 30 percent smaller than the corresponding eigenvalues of the original  matrices

in table 4.  The new condition numbers, however, are slightly larger but more uniform.

A similar pattern is uncovered for the Q91 matrix in table 7.  The diagonal

elements have shrunk by about 30 percent with a 33 percent reduction of the support

intervals.  The off-diagonal elements show a wider range of changes, perhaps as a

consequence of their miniscule original values.   The eigenvalues of the Qt  matrices in

table 7 exhibit a 40 percent reduction in comparison to the original counterparts in table

4.  The condition numbers, however, are only about 15 percent smaller.

There is no doubt that a variation of between 30 to 50 percent in the selection of

support values has produced a significant variation in the parameter estimates, as
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expected.  The same variation of support intervals reveals an interesting pattern of

changes in the predictions.  First of all, all the crops in table 7 exhibit a prediction error

that lies within 20 percent of the original prediction errors in table 5.  Some of the errors

increase and some decrease, in absolute value.   As an overall measure of the prediction

error we have computed the average absolute percent error.  Such an error is about the

same in the two sets of predictions, with an average error of 12,13 for the original

predictions in table 5 and an average error of 11.62 for the prediction corresponding to

the shrunk set of support values.   The average absolute percent error of the input shadow

prices shows a reduction of about 20 percent between the two scenarios.

The second set of additional supports enlarges the original weights w1
1 to

w1
3 0 3 6= ( , , )  and the weights w2

1  to w2
3 5 0 5= −( , , ).  The results are presented in table 8.

The matrix S for 1991 in table 8 (compared with a similar matrix in table 3)

indicates that an increase of 100 percent in the support intervals has induced a variation

of up to about 90 percent in the coefficients estimates.  The eigenvalues of the matrices

from 1986 to 1991 follow a similar pattern.  The condition numbers of the S matrix in

table 8, however, are very close to those of the original S matrix in table 3.

A comparison of the Q  matrix in table 8 with the Q  matrix in table 3 indicates

that a 100 percent enlargement of the support intervals has induced an increase in the

eigenvalues by about the same percentage, except for the largest eigenvalue which



28

exhibits an increase of about 130 percent.  For this reason, the condition numbers of the

Q  matrix in table 8 are larger (by 3 points ) than the eigenvalues of the Q  matrix  in

table 3.  The new eigenvalues exhibit the same pattern as the original ones.

Although, on the estimation side, the enlargement of the support intervals has

induced an increase of the estimated parameters of about 100 percent, on the prediction

side, the same enlargement has much less dramatic effects.   Table 8 shows that the

percent difference in output decisions for 1992 is rather close to the same differences in

table 5.  As a more compact measure, the average absolute percent prediction error for

the output decisions in table 8 is 13.02 while the comparison measure in table 5 is 12.13.

The average absolute percent prediction error for the input shadow prices is 10.72 in table

8 and 9.66 in table 5. This result is similar to that encountered previously with a 50

percent reduction of the support intervals.

As in any quantitative analysis the prediction aspect is more relevant than the

individual parameter estimates, the above sensitivity results lend some comfort to the

notion that the subjective choice of support intervals in the GME approach may not be so

crucial as some authors have claimed.

Conclusion

The main goal of DPEP is to make a rational and consistent use of the available scarce

information regarding economic decisions. In this paper, the routine statistical
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information produced by the agricultural reporting service of the State of California was

analyzed in a dynamic model for annual crops under the assumption that the economic

agents form their output price expectations according to a Nerlove-type adaptive process.

The DPEP methodology was developed along the framework of the static Symmetric

Positive Equilibrium Problem (SPEP) which requires a three-phase development.  Phase

1 recovers the latent marginal costs of the limiting inputs and of the realized output

levels.  Phase 2 estimates a consistent cost function that replaces the fixed coefficient

technology and introduces more direct sustitutability between inputs and outputs. Phase 3

verifies the calibration process and allows the analysis of various policy scenarios.  In the

DPEP approach, however the three-phase scheme proper of SPEP must be preceded by

the estimation of the relevant equation of motion that confers the dynamic character to

the model.  Furthermore, a significant difference between the original SPEP and the

DPEP consists in the definition of marginal cost.  In a SPEP static model, the marginal

cost is the sum of the fixed marginal cost due to limiting inputs plus the variable marginal

cost associated with the output levels.  In the DPEP model, on the contrary, the period-to-

period marginal cost is simply the marginal cost associated with limiting inputs.  The

marginal cost associated with the output levels becomes the costate variable that assumes

an inter-temporal significance.

The estimation of the parameters of the equation of motion was performed using a

maximum entropy approach with “endogenous” specification of the support values of the
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corresponding probability distribution.  In other words, the sample data were used to

specify both the levels and the number of discrete supports.  This procedure, suggested by

van Akkeren and Judge, eliminates the need for the researcher to select subjective levels

of support.

The estimation of the cost function, with parameters dated by each time period,

could not use the “endogenous” specification of the support values because the van

Akkeren’s suggestion requires more than one observation.  The original GME

specification was, therefore, adopted and a sensitivity analysis was performed in order to

gauge the effects of the subjective choice of support intervals.  It turns out that the

parameter estimates are substantially more affected by this choice than are the prediction

errors.   As the predictions are more important than the parameter estimates, it may be

possible to rely with some confidence on the empirical results.

The parameter estimates of the cost function indicate a remarkable stability of the

technology implied by the economic agents’ input and output decisions.  Hence, it is

possible to revise the specification of phase 2 and assume that the matrices Q  and S of

the cost function remain constant throughout the analyzed horizon.  In this case, the

estimation could be performed using the sample information in order to specify the

support values, thus removing an important item of contention among researchers.
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