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Summary

This paper proposes a methodological approach for eliciting farmers' utility
functions. The methodology is non-interactive, in that the parameters defining
the utility function are obtained by observing the actual behaviour adopted by
farmers without resorting to the use of questions on random lotteries. The
methodology recognises that the farmer attempts to achieve several objectives,
most of which are in conflict. The methodological approach is applied to a
large farmer in the county of Vega de Cdrdoba, Spain. The primary empirical
finding of this research was a satisfactory explanation of farmers' behaviour
through a multi-attribute utility function with three attributes: working capital,
risk and level of relative profitability.

Keywords: farmers' goals, utility function, multi-criteria analysis, goal
programming.

1. Introduction

Nowadays, it is well accepted that multiple objectives are the rule rather
than the exception in the agricultural field when decisions are taken at the
farm or regional level (see Gasson, 1973; Cary and Holmes, 1982; Romero
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and Rehman, 1989; Dent and Jones, 1993, and a large body of other litera-
ture). Once the multiplicity of objectives in agriculture is accepted, there are
two main approaches to building decision-making models.

The first and most rigorous direction consists in defining a utility function
comprising all relevant objectives for a given decision problem. This kind of
methodology, known as Multi-Attribute Utility Theory (MAUT), was chiefly
developed by Keeney and Raiffa (1976). MAUT is a theoretically sound
approach based on the assumption of rationality underlying the classic para-
digm of expected utility created by Von Neumann and Morgenstern (1944).
However, its applicability poses many difficulties, as is explained below. Thus,
very few applications of MAUT in the agricultural field can be reported (e.g.,
Herath, 1981; Delforce and Hardaker, 1985; Foltz et al, 1995).

The second direction consists in looking for multi-criteria approaches
without the theoretical soundness of MAUT, but which can accommodate
in a realistic manner the multiplicity of criteria inherent to most agricultural
planning problems. Among the possible surrogates of MAUT, the most
widely used in the agricultural field are: goal programming, multi-objective
programming and compromise programming. Rehman and Romero (1993)
analyse the pros and cons of these surrogates in agriculture.

A major problem associated with the formulation of MAUT models lies
in the high degree of interaction with the decision maker required by this
methodology. This issue is particularly important in agriculture where the
cultural background of the decision maker is often not the most suitable for
undertaking such an interactive process. Thus, within the context of a
peasant economy, to question the person in charge of a family farm thor-
oughly about his/her preferences concerning different random lotteries in
order to test independence conditions or assess individual utility functions
can be a very indecisive process.

This paper presents a pragmatic methodology capable of assessing a
farmer's utility function. The proposed approach does not require any kind
of interaction with the decision maker, but rather an awareness of the actual
behaviour followed by the farmer. In other words, it attempts to obtain a
utility function consistent with preferences revealed by farmers themselves.
A drawback of the method is that revealed preference can be distorted by
factors not under control of the farmer (see end of Section 3).

The next section examines the main problems associated with the implemen-
tation of the MAUT approach, especially in agricultural applications. The
paper then uses our non-interactive approach to assess the utility function of
a big farmer in the county of Vega de Cordoba in Andalusia, Spain.

2. The classic implementation of a MAUT model: Some criticisms in the
agricultural field

The classic assessment of a MAUT model requires the implementation of
five basic steps, which can be summarised as follows (Zeleny, 1982:419-431):
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1. To train the decision maker in the terminology, concepts and techniques
to be used.

2. To test the corresponding independence conditions in order to justify
the appropriate functional form of the multi-attribute utility function
(additive, multiplicative, etc.).

3. To assess the individual utility functions for each objective relevant to
the corresponding decision problem.

4. To estimate the weights and scaling constants associated with each
utility function. Once the values of these parameters and their corre-
sponding functional form (step 2) are known, then the individual utility
functions can be amalgamated into an aggregate multi-attribute utility
function.

5. To test the consistency of the results obtained.
The last four steps require notable interaction with the decision maker

as several artificial random lotteries requesting values of outcome which
secure certain indifference statements are presented to him/her. These kinds
of questions are not easy to answer. Moreover, as some researchers have
pointed out, the MAUT methodology assumes a priori that decision makers
evaluate lotteries as if they are maximising expected utility. Consequently,
there is a certain circularity within the MAUT approach.

Indeed, some of the procedural steps demand from the decision maker
not only answers to difficult questions but a large number of answers. Thus,
to estimate the values of the scaling constants in a multiplicative functional
form, where the additive independence condition does not hold, requires
answers to 2q-\ questions, where q is the number of objectives under consider-
ation, i.e. for 5 objectives - not an uncommon situation in agriculture -
elicitation of the scaling constants requires formulating and obtaining
answers to 31 statements based upon random lotteries!

For these reasons, the pragmatic value of the MAUT approach is limited
to problems with few objectives (at most two or three) and with an important
economic relevance, such as the location of an airport or a nuclear power
plant. Within this context, the capacity and responsibility of the decision
maker makes it possible to implement such a complex interactive process.

It is obvious that the application possibilities of the traditional MAUT
approach are scarce in the agriculture field. To establish such an exhaustive
interaction with a subsistence farmer or even a commercial farmer in order
to elicit their utility function does not seem advisable. The next section
demonstrates how it is possible to elicit this kind of utility function without
the need to interact with the decision maker. In this way, by preserving the
basic theoretical underpinning of the classic utility optimisation, a multi-
attribute utility function consistent with the actual preferences shown by
farmers will be obtained. In short, the information necessary to assess the
utility function will be obtained by observing actual behaviour rather than
by posing complex questions to farmers.
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It should be emphasised that this paper does not claim the superiority of
the proposed method with respect to MAUT. The latter remains the theoreti-
cally correct method to follow when a strong interaction with the fanner is
possible.

3. Methodology

The first step in the methodology corresponds to a previous study (Sumpsi
et al., 1993, 1997) where weights indicating the relative importance to be
attached to the objectives followed by a farmer are elicited. The 'best' weights
are those compatible with the preferences revealed by the farmer being
analysed. For this task and the new methodological proposal, the following
notation is used:
x = vector of decision variables (i.e., area covered by each crop)
F = feasible set (i.e., the set of constraints imposed on the model)
/; (x) = mathematical expression of the i-th objective
W; = weight measuring relative importance attached to the i-th

objective
/*; = ideal or anchor value achieved by the i-th objective
/ i + = anti-ideal or nadir value achieved by the i-th objective
f = observed value achieved by the i-th objective
fj = value achieved by the i-th objective when the j-ih objective is

optimised
n,- = negative deviation, i.e. the measurement of the under-achievement

of the i-th objective with respect to a given target.
Pi = positive deviation, i.e. the measurement of the over-achievement of

the i-th objective with respect to a given target.
The first step consists of defining a tentative set of objectives /i(x), ...

/i(x), ...fq(\) which seeks to represent the actual objectives followed by the
farmer. The second step consists of determining the pay-off matrix for the
above objectives. The elements of this matrix are obtained by optimising
each objective separately over the feasible set and then computing the value
of each objective at each of the optimal solutions [see Sumpsi et al. (1997)
for technical details about the design and construction of the pay-off matrix].

Once the pay-off matrix is obtained, the following system of q equations
is formed:

T
. 7 = 1
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The last condition of (1) is not essential and is introduced only to normal-
ise the weights Wj. If this system of equations has a non-negative solution,
this will represent the set of weights to be attached to each objective, and
thus the actual behaviour ( / i , /2 , . . . , / , ) followed by the farmer is reproduced.
In most cases, an exact solution does not exist. In other words, there is no
set of weights wl5 w2, ..., wq capable of reproducing the actual preferences
revealed by the farmer. Consequently, the best solution of (1) is sought. This
problem can be considered equivalent to a regression analysis case where/-
are the endogenous variables and/J,- the exogenous one. Among the possible
criteria for minimising the corresponding deviations, and given our preferen-
tial context, the following are proposed:

The Lx criterion. With this approach, the sum of positive and negative
deviational variables is minimised. This criterion underlies the use of metric 1.
As is well known since Charnes et al. (1955), this kind of regression analysis
problem can be formulated in terms of goal programming (GP), as follows
(see also, Ignizio, 1976; Romero, 1991):

M » n Z j
i = l \ Ji /

subject to:

Z wjfij+ni-Pi=fi ' = 1> 2 . •••> 1
(2)

It should be remarked that GP is not used here as a 'satisficing' decision-
making approach, and, as such, the right-hand-side values do not represent
proper targets. In this paper, GP is simply used as a mathematical device
to approximate a solution for an unfeasible system of equations such as (1)
where the right-hand sides are the values achieved by the objectives under
consideration.

From a preferential point of view, the hx criterion is consistent with a
separable and additive utility function (see, e.g., Dyer, 1977). That is, weights
obtained from (2) lead to the following utility function:

i W-
«=Z-ri/<M (3)

where kt is a normalising factor (e.g., ideal minus anti-ideal values; i.e.

The L^ criterion. With this approach, the largest deviation D is minimised.
This criterion underlies the use of metric oo and the corresponding regression
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analysis problem can be formulated in terms of linear programming (LP)
as follows (see Appa and Smith, 1993):

Min D, subject to:

(4)

It has been proved elsewhere (Ballestero and Romero, 1991) that model
(4) implies the following chain of equalities:

r̂ t *jfu-f\=^
qLj=l

(5)

That is, from a preferential point of view, the Lx criterion implies a
perfectly balanced allocation between the differences given by the prediction

I wjfu
J=I

and the value observed for/f in the q objectives considered. The correspond-
ing utility contours are represented in Figure 1 for a bi-criterion case. This

CM

c

1
O

Direction of improvement

Direction of improvement

Contours of a
Tchebycheff function

Contours of an
augmented Tchebycheff
function

Objective function 1 'i

Figure 1. Utility contours for a Tchebycheff and an Augmented Tchebycheff function
(bi-criteria case)
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kind of utility function, in the operational research literature, is called a
Tchebycheff or maximin function for which the largest deviation is minimised
(see Steuer, 1989).1 This structure of preferences leads to the following utility
function:

^ ^ J (6)
The above utility function does not imply separability among objectives

but a perfect complementary relationship between them (see again Figure 1).
On the other hand, function (6) is not smooth and hence its maximisation
is performed by solving the following equivalent problem (e.g., Nakayama,
1992):

Min D subject to:
(7)

jUf-fMl^D i=l,2, ... q

A compromise between L1 and Lx. With this approach, a compromise
between minimising the sum of deviational variables and minimising the
largest deviation is sought. This aggregate criterion attempts to take advan-
tage of both approaches (Lewis and Taha, 1995). The corresponding problem
is formulated in terms of LP as follows:

subject to:

(8)

Weights obtained from (8) lead to the following utility function:

(9)

If X is very large, u becomes an additive and separable utility function
[see expression (3)], whereas for A = 0, u becomes a Tchebycheff function
[see expression (6)]. For small values of A, u can be considered an augmented
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Tchebycheff function. That is, the second term of (9) gives the utility contours
a 'certain slope'. Thus, if parameter X takes a small value, then (9) will lead
to a well-balanced solution (an augmented Tchebycheff function) (see
Figure 1). However if the parameter X takes a large value, then (9) will lead
to a solution close to the solution corresponding to the separable function
given by (3).2 Thus, depending on the value of parameter X, different utility
functions are generated. Again, the above utility function is not smooth.
Consequently, its maximisation is performed by solving the following auxil-
iary problem:

D-AEvViM
i = l Ki

subject to:

l ^ C / f - . / M K D i= l ,2 , . . . , 9 (10)

The next step in our methodology involves determining the functional
form of the multi-attribute utility function which best approximates the
actual situation. For this purpose, we only need to maximise alternatively
expressions (3), (6) or (9) subject to the relevant constraint set and to
compare the results with the actual values achieved by the q objectives. For
instance, for utility function (3) the following mathematical programming
problem is formulated:

Max t ^/;(x)

subject to:

/•(x) + «i-pi=y; i=l,2,...,q

x e F

Similar mathematical programming problems are formulated for the other
utility functions. The preference structure which provides the solution closest
to the actual situation will be considered the utility function consistent with
the preferences revealed by the farmer. If none of the utility functional forms
examined leads to consistent results, then other forms of utility function
should be tried until the behaviour of the farmer is predicted with enough
accuracy. By consistent results, we mean that there is a marked similarity
between the predictions provided by the utility function chosen and the
observed values for each of the objectives. The similarity can be checked
using a variety of statistics (see note 3).

It should be noted that the methodology proposed uses just one year's
data. Therefore, it is crucial that the year chosen reflects a typical year for
which stochastic variables are close to their expected values, otherwise biased
results may be obtained.
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4. Application

In this section, the methodology previously described is used to elicit the
utility function of a farmer belonging to a homogeneous group of large-
scale farmers in the county of Vega of Cordoba, Andalusia (Spain). The
characteristics of this group of farmers (farm size, cropping patterns, soil
quality, etc), are similar (see Sumpsi et al., 1993) so one might hypothesise
that the behaviour of the different farmers in the group will follow a similar
pattern; that is, the utility function elicited for the farmer being analysed
can also be used to reproduce accurately the behaviour of the other farmers
in the group. This hypothesis will be checked.

To begin, we need to identify a set of tentative objectives. After preliminary
interviews with farmers belonging to the group of farms studied, the following
list of objectives tentatively reflect the economic goals of the correspond-
ing farmers:

Direction of
improvement

1. Gross margin Max.
2. Working capital Min.
3. Employment Min.
4. Management difficulty Min.
5. Risk (MOTAD) Min.

Gross margin A/f

6. The ratio —— 2 — M a x -
Working capital

Gross margin is an indicator of absolute profitability and is measured in
million ptas. Working capital is measured in thousand ptas. Employment
refers to the amount of labour required by the different crops each year and
is measured in hours. Management difficulty is a qualitative index, defined
by the authors, and is measured on a scale from 1 to 10 for each crop. Risk
is incorporated according to the MOTAD method (Hazell, 1971). The ratio
gross margin/working capital is a measure of relative profitability.

The next step was to determine the pay-off matrix for the farmer analysed.
In order to do so, a mathematical model representing the farmer's decision-
making environment was built. The model includes, along with the six
objectives, a feasible region F which takes into account different constraints,
including different types of land and availability for each type, standard
agronomic practices adopted by farmers, cash-flow limits, capital investment
limits and labour use in different time periods. For our data, the pay-off
matrix in Table 1 was obtained.

The last column of Table 1 is not actually a part of the pay-off matrix. It
has only been added to show the observed value of each objective for the
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Table 1. Pay-off matrix for the six objectives considered a

Gross
margin

Working
capital

Use of
labour

Management
difficulty

Risk Gross margin/
working capital

Observed values
for each of the

objectives s-
o
§•

f
o
a

Gross margin
(mill.ptas.)
Working capital
(thou.ptas.)
Employment
(hours)
Management
difficulty (index)
Risk (MOTAD)
Gross margin/
working capital

57.1

42,689

71,682

1754

39,170
1.338

6.1

7979

3999

711.1

18,646
0.768

7.5

9113

3382

836.5

37,334
0.825

13.8

14,354

7899

519.2

7009
0.963

48.6

34,347

50,202

1646.8

0
1.415

39.0

20,753

25,699

1559

6068
1.880

28.1

19,521

16,012

1103

8882
1.441

c
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farm considered. Once the pay-off matrix has been obtained, the following
system of equations is formulated:

57.1 w,+ 6.1 w2+ , 7 . 5 H > 3 + 13.8 W4 + 48.6 W5 + 39.0 w6= 28.1

42,689 w,+ 7,979 w2+ 9,113 w3 + 14,354 w4

48.6 W5 + 39.0 w6

34,347 w5+ 20,753 w6= 19,521

71,682w,+ 3,999w2 + 3,382w3+ 7,899 w4+ 50,202w5+ 25,699w6 = 16,012

l,754w,+ 711.1w2 + 836.5w3 + 519.2w4+ I,646.8w5+ I,558w6= 1,103

39,170 iv! + 18,646 wz+ 37,334 w3 +

1.338w,+ 0.768H>2 + 0.825w3+

7,009 w4

0.963 w4 + 1.415w5

6,068 w6= 8,882

1.880 w6= 1.441

w« = 1

(12)

The above system of equations does not have a non-negative solution, i.e.,
there is no set of weights actually capable of reproducing the observed values
for each of the objectives. Therefore, an approximate solution is sought by
resorting to (2), (4) and to the family of functions given by (8). The results
obtained are shown in Table 2.

For a value of the parameter X less than 0.02, the compromise criterion
provides the same set of weights as the L^ criterion and for a value of the
X parameter larger than 1.5, the compromise criterion provides the same set
of weights as the Lt criterion. It is interesting to note that for the farmer
analysed, what matters is not gross margin per se but gross margin generated
per money unit of working capital (i.e., w1=0 and w6>0). This clash between
absolute and relative profitability has been observed in other agricultural
scenarios (e.g., Mendez-Barrios, 1995).

The next step in our procedure consists of inserting these weights in the
corresponding utility functions (3), (6) and (9). To facilitate calculation of
the different utility functions, only weight values larger than 0.05 were

Table 2. Set of weights generated by different minimisation criteria

Gross margin (W,)
Working capital (W2)
Employment (H^)
Management
difficulty (W4)
Risk (W5)
Gross margin/
working capital (W6)

L,
0
0.31
0

0
0.19
0.50

£«,
0
0.19
0.09

0.05
0.05
0.62

0.02 < y < 0.25
0
0.24
0.08

0.05
0.08
0.55

Criterion

Compromise

0.25 s X ̂ 0.50 0.75 <A< 1.5
0
0.34
0

0
0.09
0.57

0
0.26
0

0.11
0.10
0.53

X>\.5
0
0.31
0

0
0.19
0.50
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considered. In fact, the inclusion in the computation process of weights less
than or equal 0.05 had a negligible effect on the numerical predictions
provided by the model. When a weight is omitted, its value is allocated
proportionally to the values of the other weights. For instance, for the
Lx criterion, the weights used to build the different utility functions are:
W l = w4 = w5=0, w2 = 0.21, w3 = 0.10 and w6=0.69.

The different utility functions were obtained by arithmetic calculation.
These utility functions were optimised subject to the constraint set in order
to check their capacity to reproduce the observed reality [see (11) for the
separable and additive case]. The three utility functions which provide
results more consistent with the actual observed values are the following:

(a) Separable and additive utility functions (uj

u, = {-0.89/2(x)-0.49/5(x) + 44964/6(x)}

(b) Tchebycheff utility functions (u2)

u2= -[Max{0.61(/2(x)-7979), 0.15(/3(x)-3382), 62050(1.88-/6(x))}]

(c) Augmented Tchebycheff utility functions (X = 1.6) (u3)

rMax{0.89(/2(x)-7979), 0.49(/5(x)-0), 44964(1.88-/6(x))}"I
"3 |_ +1.42/2(x) + 0.78/5(x)-71942/6(x) J

Table 3 shows the actual observed values for the six objectives considered,
as well as the predictions generated by the three utility functions selected.

The rationale of Table 3 is to check that the objectives and weights
estimated in equation (12) are compatible with observed values. A similar
comparison could be carried out directly in equation (12) by analysing the
values of the deviation variables. In short, the results in Table 3 allow us to
conclude that the parameters of the utility function have been correctly
estimated.

The three 'best' utility functions chosen (i.e., uu u2 and M3) basically show
the same capacity to reproduce the reality observed.3 Finding several utility
functions with the same basic predictive power, rather than a single 'best'
utility function, is not surprising. In fact, Koksalan and Sagala (1995:
200-201) have rightly remarked that different utility functional forms in
many cases yield exactly the same optimum. For example, in Figure 2, the
Tchebycheff and linear utility functions yield exactly the same optimum.4

To validate the applicability of the results to other farmers in the group,
we checked that the utility functions elicited were also able to reproduce
these fanners' behaviour with a good degree of accuracy.5 In fact, the
consistency index for all the cases in the group of farmers analysed was
never higher than 10 per cent (see note 3). This verification confirms the
conjecture stated at the beginning of this section and reinforces the pragmatic



Table 3. Comparison between observed and predicted values

Objectives

Gross margin
(million ptas.)
Working capital
(thousand ptas.)
Employment
(hours)
Management
difficulty (index)
Risk (MOTAD)
Gross margin/working
capital (ratio)

Actual
observed

values

28.1

19,521

16,012

1103

8882
1.441

Prediction
provided by ul

28.1

22,552

16,012

1103

8882
1.250

Prediction
provided by u2

32.8

19,521

16,012

1103

8882
1.680

Prediction
provided by u3

30.8

19,521

16,012

1103

8882
1.580

Prediction
provided by max

gross margin

57.1

42,689

71,682

1754

39,170
1.338

s

cs
O

&.
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o
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Efficient frontier

V Contours of a
x Tchebycheff

\ function

Contours of a
linear function

Objective function 1 ^

Figure 2. A Thebycheff and a linear function leading to the same optimum (adapted
from Koksalan and Sagala, 1995: 201)

value of our analytical effort within an ex-ante policy analysis perspective.
The last column in Table 3 shows the values achieved by each objective

when the traditional objective function that maximises the gross margin is
used. It is obvious that there is no resemblance between the observed values
for each of the objectives and gross margin maximisation behaviour. In fact,
for gross margin criterion the calculated consistency index was more than
160 per cent! This result has important practical implications. Suppose that
a mathematical programming model is built to evaluate the effects of different
agricultural policies for our homogeneous group of farmers. A conventional
choice of the objective function (i.e., gross margin) would lead to erroneous
results. However, the choice of utility functions u1, u2 or u3 as objective
function would predict realistic behavioural responses to the policy changes
for the homogeneous group of farmers analysed.

5. Concluding remarks

From a methodological point of view, it is important to point out that,
whereas in the MAUT approach it is crucial to test whether the elicited
utility function is consistent with the answers provided by the decision
maker, within our non-interactive context, an equivalent crucial point is to
check whether the elicited utility function is or not compatible with the
behaviour of the fanner observed. It is obvious that an 'as if methodology
underlies this approach. This kind of philosophical underpinning is quite
licit in economics, especially when the task is to build mathematical
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programming models for the evaluation of the effects of different agricul-
tural policies.

Within an agricultural planning context, the proposed non-interactive
methodology seems more operational than the classic MAUT approach.
However, when this kind of comparison is considered, certain doubts can
arise. In fact, the implementation of our approach requires the definition of
a constraint set representing the farmers' decision-making environment.
Indeed, as the first step in the proposed methodology shows, we need to
define the constraint set, which is obviously not an easy task. However, a
specific constraint set is also necessary with a MAUT approach if we want
to use the elicited MAUT function for ex-ante policy analysis, since we need
to optimise this function over the feasible set.

From an empirical point of view, we want to emphasise that the results
obtained clearly show how the fanner analysed has a behaviour compatible
with a series of objectives which differ considerably from the traditional
objective maximising the gross margin of the farm. The latter is the objective
function commonly used in most mathematical programming models, which
can give rise to misleading results, especially if the model is used for ex-ante
analysis of agricultural policies.6

It should be noted that the methodology focuses on an individual farmer.
However, for a homogeneous group of farmers, inferences about the group
can be made in the following two cases: (a) the utility functions elicited are
able to reproduce with a good degree of accuracy the behaviour of most of
the farmers of the group or (b) the individual farmer analysed represents
the average farmer of the group.

Our analytical effort should not be considered a purely theoretical
exercise, as it is precisely in the evaluation of the effects of agricultural
policy measures that this research can reach its maximum point of interest.
Indeed, one of the basic problems in the accuracy of ex-ante policy analysis
from research based on mathematical programming models is the correct
specification of the objective function. However, to do this, it is necessary
first to identify farmers' utility functions that are consistent with the
observed reality.

It is important to notice that although we have worked with a variety of
utility functions, if none of these had provided consistent results, others
should have been tried. In short, the approach proposed can be viewed as
a powerful generator of empirically testable behavioural hypotheses. In fact,
each of the utility functions used can be considered a behavioural hypothesis.
The 'best' empirically corroborated hypothesis will correspond to the utility
function whose predictions are closest with respect to the observed values
for each objective (i.e., expressions uu u2 and M3 in our case study).

Finally, we want to point out that this paper does not claim that our
method is better than MAUT given that these approaches are to some
extent non-comparable. MAUT is based on a philosophy of interaction with



Non-interactive methodology to assess farmers' utility functions 107

the decision maker, while the method proposed here is non-interactive and
is based upon observations of the farmers' actual behaviour. In conclusion,
if the analyst is capable of establishing an effective interaction process with
farmers, then MAUT is the right approach. On the contrary, if this type of
interaction is not possible, then MAUT should give way to approaches such
as the one proposed in this paper.

Notes

1. Within a welfare economics context, some authors refer to this function as Rawlsian (e.g.
Johansson, 1992: 32-39) given the connections between it and the principles of justice
introduced by Rawls (1973: 75-80). However, as the translation of Rawls' ideas from ethics
to economics is a controversial topic (see e.g. Roemer 1996: Chap. 5), we have decided to
denominate these functions as Tchebycheff as is usual in the mathematical and operational
research literature.

2. We note that a similar function has been proposed by Steuer and Choo (1983) for interactive
multi-criteria analysis and by Wierzbicki (1982) as a basis for the reference point
methodologies.

3. From a technical point of view, it is possible to measure the degree of closeness between the
predictions provided by functions u,, u2 and u3 and the actual observed values. This task
can be undertaken by resorting to any statistical procedure for measuring the similarity
between two sets of data. In our case, we calculate a consistency index based upon metric 1
by adding the ratios: 100*|(observed value-predicted value)|/(observed value) for the six
objectives considered and then dividing the corresponding sum by six. In this way, the index
can be interpreted as the average percentage deviation between the observed and the pre-
dicted values. Other consistency indices based on other metrics can also be used. In any
case, the degree of accuracy must be specified beforehand. In our application, the consistency
index defined above was used with a maximum allowed error of 10 per cent. The predictions
provided by u,, u2 and u3 embody errors of 2.9, 3.33 and 1.96 per cent, respectively. The
results are robust with respect to the metric chosen. Thus, if metric 2 is used, the same
ranking is obtained.

4. Stewart (1995), using a Monte Carlo simulation experiment, found that different multi-
attribute utility functions yield similar results when the same set of weights is used. This
suggests that the essential element of the procedure here involves the elicitation of preferen-
tial weights rather than identifying the most appropriate functional form.

5. In fact, the predictions provided by the estimated utility functions u,, u2 and u3 were
compared with the observed values for all the farmers of the homogeneous group. With this
purpose, the consistency index defined in note 3 was calculated, obtaining that, in all the
cases, the value of the index was lower than 10 per cent. Hence, this supports the applicability
of the results to other farmers of the group.

6. Some specialists may be surprised by the assumption that the group of farmers analysed
behave 'as if' all had the same objectives. Yet, paradoxically, most of the mathematical
programming applications in agriculture reported in the literature assume in one way or in
another that all the farmers are gross margin maximisers, which does not seem to produce
much surprise among some specialists!
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