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Abstract

Biodiesel production sustainability relates to decision making on blending involving
economic and environmental criteria. Several feedstocks candidate in European
countries biodiesel industry, namely different vegetable origin oils. The present
research aims at assessing the impact of technological constraints allocated to the
decision objectives taking into account inherent uncertainty. For this purpose
chance-constrained programming is used in order to maintain tolerance towards fuel

quality.
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1 Introduction

According the OECD-FAO outlook 2011-2020, biodiesel use in the European Union
(EU) will increase by almost 85% over the projection period. Factors such as chemical
composition, supply, cost, storage properties and engine performance determine the
selection of vegetable oil feedstocks for biodiesel production (Refaat, 2009).
Blending of different feedstocks is useful to achieve technical compliance and reduce

costs (Gulsen et al. 2014).

In the last years, controversy has been raised around the use of biodiesel due to the
high greenhouse gases (GHG) emissions. Some studies have proved that the use of

biofuels may not lead to a better environmental performance in terms of GHG



emissions, mainly because of Land Use Change (LUC) and Indirect Land Use Change
(ILUC) due to feedstock cultivation (Soimakallio & Koponen, 2011).

The implementation of policies like the European Community Renewable Energy
Directive (RED) and the subsequent substitution for food crops has conducted the
biodiesel market to take into account not just the costs but also the GHG emissions
associated to biodiesel. Besides cost reduction, blending can also help to manage the
GHG emissions characteristics of the biodiesel (Olivetti et al. 2014). A bi-objective
mathematical programming model to optimize the blend of virgin oils for biodiesel
production, minimizing costs and life-cycle GHG emissions was developed by
Caldeira et al. (2014) that focused on the feedstocks biodiesel composition,
considering it in a deterministic way. The drawback of this approach is that the
biodiesel blending process is subject to uncertainty because the feedstock input
composition is a stochastic parameter. The type of feedstock affects the fatty acids
(FA) ingredients which shape the final biodiesel blend’s physical and chemical
properties. Consequently the technological specifications that the final blend should

conform to are in reality stochastic constraints for the mathematical model.

The consideration of chemical composition uncertainty in blending processes has
been considered by several authors using Chance Constrained Programming (CPP)
Kumral (2003), Rong and Lahdelma (2007), Sakalli (2011, 2012). CPP is a stochastic
programming technique that was first presented by Charnes and Cooper (1959) on a
system feasibility in an uncertain environment focusing in the reliability of the
system, which is expressed as a minimum requirement on the probability of
satisfying constraints (Sahinidis, 2004). By controlling the probability that a
constraint may be violated, it adds to the model the flexibility and reality of the
stochastic model under consideration (Kampempe, 2012). The application of CCP to
develop a blend optimization model for biodiesel production by Gllsen et al. (2014)
and Olivetti et al. (2014) showed that besides potential costs reduction, blending can

be used to manage GHG emissions uncertainty characteristics of biodiesel.

Moreover, for the biodiesel multiobjective blending problem it is very interesting to
know the sensitivity of the solution to technological specifications that are imposed
by the authorities. Although the shadow prices of the model could give this type of
information, the multiobjective nature of the problem dictates a special approach for
assigning the sensitivity of each different objective to the imposed technological

constraints.

Therefore, the main goal of the paper is to conduct the sensitivity analysis in a

multiobjective biodiesel blending problem taking under consideration the



uncertainty of the chemical composition of the input feedstocks and the required

technical specifications.

We first present the methodology that is composed of the deterministic
multiobjective blending problem, the method for breaking the shadow prices to the
individual objective and the transformation of the technological specifications to
stochastic constraints. Finally we apply the above methodology to a case study for a

two-objective biodiesel blending problem in Portugal.

2 Methodology

2.1 The deterministic multiobjective blending problem

The general mathematical formulation for a multiobjective blending problem can be

written as:

L l

(1) st.ZZ(q]'i'xi) <b, Vp
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where k is the set of objectives with cardinality K, i is the set of inputs with
cardinality I, j is the set of ingredients with cardinality J, p is the set of required
properties of the final blend (cardinality P) which are functions of its ingredient
composition, wy, is the weights of the individual objectives, cy; are the individual
objective coefficient, x; is the input quantity, qj; is the concentration of j-ingredient

to i-input, and by, is the limit of p-property.

In order to tackle with the multiplicity of objectives we are using the "weighting
method". It is classified as an "a posteriori or generation" method for solving
multiobjective optimization problems. In this approach at least a representative set
of the efficient solutions are generated and presented to the decision maker in order

to choose the "most preferred" one (Hwang and Masud cited by Mavrotas 2009).

For the blending problem presented in (1), the mathematical formulation is as

follows:
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So as to obtain the Pareto efficient set of solutions we iteratively assign various

weight combinations to the objectives and solve the problem.

2.2 Decomposing Shadow Price for the various objective function

components

For single objective Linear Programming problems, the shadow price is the objective
value change for a unit change on the Right Hand Side value of a certain constraint.
In resource allocation problems the shadow price of a resource constraint can be
interpreted as the decision maker's maximum value for obtaining an additional unit
of that resource. In blending problems the shadow price represents the

improvement in the objective function for relaxing a requirement of the final blend.

In multi-objective problems the interpretation of shadow prices can be useful for
decisions in policy and industry. Tehrani et al. (2009) presented a methodology to
use the shadow price information for joint cost allocation. There is also an
application of CO2 emissions allocation in joint product industries (Tehrani, 2006)
and an estimation of reduced revenue from reducing nitrogen pollution (Shaik et al.,
2002).

However the calculations turns out to be troublesome since the increase of the
composite objective value has to be allocated between the individual objectives. We
apply a technique presented by McCarl et al. (1996) to decompose the shadow

prices.
We are going to express the weighting from of the problem given in equation (2) in
matrix notation

min (wy - C; +wy - Cy + -+ wy - Co) - %

(3) Ipyy - Q-
x>

>B

o X

where CT( is a 1xI vector containing the objective coefficients for the k-objective , X is

the Ix1 vector of the decision variables, Ip,; is an PxJ unity matrix, Q is a JxI matrix

containing the g;; elements, B is a Px1 vector containing the property limits.



The decomposed form of the objective function of the problem that is given in

Equation 3 is equal to

(4) minC;- %, where G =wy - C +wy -+ Cy 4 -+ wy - Cp,
We know that the shadow prices are given by

(5) Uy =Cm-B™"

where @) is the objective functions coefficients for the basic variables of the optimal

solution and B~ is the basis inverse. From equation (4) we get that
(6) Cip=w; Cpt+wy Cop+-+wi Cyp

where @,@, ...,C—RB) are the coefficients of the basic variables in the individual

objectives context.

Thus the shadow prices are equivalent to
(7)) Ux=Cep-B " =wi-Cip- B 4wy Cop B+ +wy Cg B

The @ - B~! component is the decomposed shadow prices of the k-th objective. It
is a 1xP vector, expressing the amount that one unit of increasing the p-th constraint
will affect the k-objective's value, considering that we are already at the optimal

solution.

So we need to contrive a way to compute each CTB -B~1 in order to complete the
decomposition of the shadow prices. However as McCarl (1996) states: "linear
programming solvers do not generally yield the basis inverse". Furthermore
computing the basis inverse from scratch would be computationally equivalent to
solving again the LP problem. The algorithm proposed consists of the following steps:
Solve the composite problem and save the basis. For each k-th objective set w, = 1
and all other weights equal to zero. Load the saved basis of the composite problem

and startup the problem (but make no iterations). The reported shadow prices is the

C_,(B)-B‘1 product. Implementation for the GAMS facility can be found on the

aforementioned paper.

This method cannot be directly applied to problems that exhibit degeneracy.
Although McCarl et al. (1996) gives a technical solution for computing a consistent
decomposition of the shadow prices, degenerate problem are expected to have
different positive and negative shadow prices (Gal, 1986) representing a diverse
effect on the optimal price of an increase versus a decrease on the right hand side of
a constraint. In this case different approaches would be more appropriate as
discussed in Ho (2000).



2.3 Introducing uncertainty in the constraints: Chance constraint
programming

When the ingredients composition of each input is a stochastic quantity the blending

must be altered accordingly.

The chemical composition of each fatty acid for each feedstock is actually a
stochastic quantity. In order to deal with this fact we are using a Chance Constraint
approach auxiliary to the problem discussed previously. The deterministic
constraints are actually replaced be non-deterministic ones, having the following

form:

N
(8) P{Zaixisb}21—a, xi20and 0<a<1
i=1
meaning that the constraint is realized with a minimum probability of 1 — a.

If a; is normally distributed parameter, a; ~ N(,ul-,oiz) and all a; are independent

the constraint is converted as follows:
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and a variance of one. Then, the stochastic chance-constraint is transformed into the
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Where represents a standard normal variate with a mean of zero

following inequality:
b= XX
(10) "\
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Where K;_,=1—a and ¢ (-) represents the standard normal cumulative

distribution function (Sakalli, 2011)

2 @ (Kl—a)

This yields the following nonlinear deterministic constraint:

(11)




As Seggara et al. demonstrate a linearized, more conservative, equivalent of
equation (6) is

N

N
(12) Z#i xi+ Kiq *Zaixi <b
i=1

i=1

The existence of more Pareto points in the non-linear form of the problem is an
expected outcome. In figure 4 an arbitrary linear programming problem with only
linear (a) and only non-linear (b) constraints is drawn.

obj11 obj12
A1

_ obj13

obj3

(a) | (b)

Figure 1, Why a linear constraint model has more Pareto points than its non-linear version

In 4a, the problem has two constraints (C1, C2) and three Pareto points (A,B,C). As
the relative weights of the objectives are changing, so is the slope of the objective
function (from obj1 to obj2 and finally to obj3). The change of the slope results in the
three corners of the feasible region becoming Pareto solutions for different weight
combinations. However in 4b, the C1 linear constraints have been converted to a
non-linear one and it is obvious why the Pareto points have been multiplied. As the
slope of objl is changing there is almost a continuous generation of new Pareto
points.



3 Case Study

We implement the discussed methodology to the Portuguese case. According to
information provided by the Portuguese energy agency (DGEG), in 2012 the main
feedstocks used for biodiesel production in Portugal were soya (49%), rapeseed
(34%) and palm (14%). For this reason we use those three feedstock in our model.

The realization of the model is as follows.

The model involves the minimizing of two objective functions: biodiesel production-
feedstock costs and life cycle GHG emissions. Costs are calculated by multiplying the
guantity of each three feedstocks (palm, rapeseed and soybean oil) by its market
price and GHG emissions by the product of the quantity of each feedstock to its life-

cycle emissions per quantity unit.

The prices of the feedstock oils are the average price between November 2008 and
November 2013, provided by Index Mundi (2014). For palm and soybean GHG
emissions were drawn from Gilsen et al. (2012) while for rapeseed from Malca et al.
(2014). In order to scale the objectives, the above data was divided by the largest
value in each row resulting in the relative price or GHG emissions that is given inside

the parentheses in table 1.

Table 1, Case study data

Feedstock Oil
Palm Rapeseed Soybean
Price (€/tn) 629 (0.761) 826 (1.000) 753 (0.911)
GHG emission
(8CO2¢/M)) 67 (1.000) 48 (0.716) 58 (0.856)

Furthermore the model is subject to technical specification constraints that the final
properties of the biodiesel blend shall conform to. Each virgin oil feedstock presents
a typical Fatty Acid (FA) profile that influence those final properties. It is generally
assumed that FA compositional profiles remain unchanged during conversion of the
feedstocks to fuels via transesterification. For this reason, the fatty esters properties
are directly related to the FA profile. Structural features such as chain length, degree
of unsaturation and branching of the chain determine the fuel properties. Table 1
shows the compositional profile for biodiesel (FAME) from palm, rapeseed and soya
adopted from Hoekman et al. (2012). To each FA a nomenclature CX:Y is associated,
where X is the number of carbon atoms and Y the number of carbon—carbon double
bonds in the FA chain.

Table 2.FA compositional profile (%) for palm, rapeseed and soya adapted from Hoekman




et al. 2012.

Fatty Acid i Palm Rapeseed Soya
Common Name Nom  (FAindex) V] c 1} c 1] c
Caprylic Cc8:0 1 0.1
Capric C10:0 2 0.1 0.6
Lauric C12:0 3 025 0.1 0.26
Myristic C14:0 4 1.01 021 0.08 0.03 016 0.12
Palmitic C16:0 5 42.81 287 4.3 1.04 1154 2.0
Palmitoleic C16:1 6 0.18 0.06 019 0.10 0.24 0.22
Heptadecenoic C17:1 7 0.10
Stearic C18:0 8 411 097 155 057 397 0381
Oleic C18:1 9 416 228 61.74 3.33 2361 1.39
Linoleic C18:2 10 9.62 135 2156 182 535 1385
Linolenic C18:3 11 0.28 0.14 846 136 698 1.11
Arachidic C20:0 12 028 0.10 039 019 039 0.27
Gondoic C20:1 13 0.17 006 101 054 0.26 0.05
Eicosatrienoic C20:2 14 0.1
Behenic C22:0 15 0.1 049 0.27 033 0.17
Erucic C22:1 16 041 019 0.30
Lignocric C24:0 17 0.1 0.1 0.11 0.02
Nervonic C24:1 18 0.15 0.07

In the literature, prediction models based on the FA composition are used for the
following biodiesel proprieties: density (Den), cetane number (CN), cold filter
plugging point (CFPP), iodine value (IV) and oxidative stability (OS) (Giakoumis, 2013,
EN 14214, Bamgboye & Hansen 2008, Ramos et al. 2009, Park et al, 2008). These
predictions were used as technical constraints in this model. These models have
been used in Caldeira et al. (2014) and according to the authors the derived results

are in agreement with values found in the literature.

Finally, in order to analyze the proportions of each feedstock in the blend, an
additional constrained is added; the sum of the feedstocks shall be equal to unity.
We implicitly consider that biodiesel production is fully consumed by the oil refinery

industry and that the supply of the feedstocks are unlimited.

So the realized deterministic model is expressed in the following way:



i

min {Z(Pri . Qi)rZ(GHGi . Qi)}

s.t

PropConst, + 2 <PropCoefp,j -Z(Qi . qi,j)> = PropLTgt, Vp €Plb
Ji i

(13)
PropConst, + Z <PropCoefp,j -Z(Qi : qi,j)> < PropGTgt, Vp € Pub
j i
Yo
i
Q=0 Vi
where
Sets
i e {'soya','rapeseed’,'palm'}, the various feedstock oils
p € {DenlLB, DenUB, IV, CN OS, CFPP}, set of properties
Plbe {DenlB, CN OS}, set of properties with lower bound
Pub € {DenUB, IV, CFPP}, set of properties with upper bound
je{1,2,..,18}, Fatty Acids index
Variables
Q;, The % of feedstock i in the final blend (%)
Data

Pr;,the ratio of the price of feedstock | to the most expensive feedstock (number)

GHG;, the ratio of the GHG emission of feedstock i to the feedstock with the highest GHG
emissions (number)

q;;,Vi€ F; Vi€ A:The % of FA-j in feedstock i (%)

PropCoef, ;: Coefficient of FA-j in the prediction model for property k (units)
PropCoefy: Constant in the prediction model for property-k (units)
PropGTgt,: Target for properties with lower bound (units)

PropLTgt,: Target for properties with upper bound (units)

However, because the FA composition for each feedstock oil (qi].) is actually a

stochastic quantity, we will convert the deterministic technical constraints to

equivalent stochastic through the chance constraint method. So the constraints are

transformed as follows:

10



P { PropConsty + Z <PropCoefp_j -Z(Qi : qi,j) ) = PropLTgt, r=1—a Vp €Plb
i

j
(14)

P PropConst, + 2 <PropCoefp,j -Z(Qi . qi,j)> < PropGTgt, =21—a Vp €Pub
Ji i

Where P(f) > 1—a is the probability of constraint f to be realized, with a
minimum probability of 1 — a. Following the Chance Constrained methodology
already discussed, the above constraints are converted back to deterministic ones

and are now formed as

PropConst, + Z (PropCoefp,j . Z(Qi qT]) ) — Zvalue
J i

J

Z (Prop(]oefm2 -Z(Qiz -stdi,j2)> = PropLTgt,,
i

Vp €Plb
(15)

PropConst, + Z (PropCoefp,j . Z(Qi qT]) ) + Zvalue
J i

Z (Prop(]oefm2 -Z(Qiz -stdi,j2)> < PropGTgt,,
i

J

Vp €Pub

where the Zvalue corresponds to the test coefficient for Gaussian distribution, q,;is

the mean value of g;; and stdl-J-2 is the standard deviation for q; ;. This parameter

allows the control of the constraint level and reflects the risk preferences of the user.

The linearized version of the above non-linear chance constraints (eq. 12) are:

PropConst, + Z (PropCoefp,j . Z(Qi qT]) ) — Zvalue
J i

(16) . (Z (PropCoefp,j -Z(Qi -stdi’j)>> = PropLTgt,,

J i

Vp €Plb
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PropConst, + Z (PropCoefp,j . Z(Qi T,) ) + Zvalue
j

i

. (Z (PropCoefp,j . (Qi -stdi,j)>> < PropGTgt,,
i

J

Vp € Pub

4 Results and Discussion

As already discussed we used the weighting method to explore the multiobjective
model. We calculated all the weight combinations for the two objectives in 0.01
steps, a total of 101 points. To make this more clear we give the first and last 5 (Cost
, GHG) weight combinations: {0.00, 1.00 / 0.01, 0.99 / 0.02, 0.98 / 0.03, 0.97 / 0.04,
0.96 /0.05,0.95/ ....... / 0.95, 0.05 / 0.96, 0.04 / 0.97, 0.03 / 0.98, 0.02 / 0.99. 0.01 /
1.00, 0.00}.

in order to be able to use the shadow price decomposition we proceed with the
linearized version of the chance constraint model. In the 95% confidence level
(z=1.96) the model was infeasible for all of the weight combinations. This can be

attributed to the fact that the linearized model is a much more restricting

transformation of the probabilistic constraint, since / N ofx? < oix; . For this

reason we reduced the confidence interval to 90% (z value=1.644853).
So, for the linearized version, the Pareto front was as follows:

Table 3.Pareto fron of linearized chance constraint model

Weights range Cost GHG
Cost weighte {0.00,
0.54} 795.44 50.94
Cost weight € {0.55,
1.00} 776.24 52.79

The blend composition for the mentioned weight combinations is shown in figure 1.
The X-axis gives the weight combination and the Y-axis the proportion of each input

feedstock in the final blend.

12
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Figure 2, Blend composition for all weight combinations of linearized chance constraint model

We see that only rapeseed and palm is used for making the biodiesel blend.

Afterwards we examined the differences between the linearized CC model and the

original

non-linear

constrained version

(non-linearity relationships in the

constraints). In figure 2 we show the Pareto front points of the non linear Chance

Constraint problem (blue points) along with those of the linearized version (red

points). In figure 3 the blend composition of the non-linear model is given.
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Figure 3, Pareto curves of non-linear and linear chance constraint models
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Consequently, the linearized version of the CC model retains enough information for
the decision maker, since the continuous Pareto front is very fine detailed but the big
picture of the Pareto map is not changing dramatically.

Finally we apply the shadow price decomposition discussed in the methodology
section and the results are presented in table 4.

Table 4.Shadow prices decomposition

Weight
combination

Cost weight€ Upper Bound of lodine Cost +0.00344
{0.00, 0.54} Value (IV<IVy) GHG -0.041

Cost weight € | Upper Bound of Cold Filter Cost -0.0179
{0.55, 1.00} Plugging Point (CFPP<CFPP,) GHG +0.02128

When cost is more important than GHG emissions (Cost weight € {0.55, 1.00},

bottom two lines) then an increase in the upper bound of CFPP (CFPPy) would result

in a decrease (-0.0179) in the Cost component, which has a positive context since the

target is to minimize cost, and in an increase in GHG emissions (+0.02128). In the

case where GHG emissions are evaluated as more important (Cost weight€ {0.00,

0.54}), the IV constraint replace CFPP as the binding constraint. If the upper bound of

IV (Vo) was to be increased by one unit then the Cost component of the objective

value would increase (+0.00344) while the GHG emissions would decrease by 0.041.

The implications of the above findings are quite important since they can be a

guideline for evaluating the efficiency of technical specifications relatively to the cost

14



and GHG emissions of the biodiesel production process. That could be the case when
a new technology that has the potential to alter technological specifications of the

input biodiesel oil is under consideration.

5 Conclusions

In the last years, controversy has been raised around the use of biodiesel due to the
high greenhouse gases (GHG). The implementation of policies like the European
Community Renewable Energy Directive (RED) and the subsequent substitution for
food crops has conducted the biodiesel market to take into account not just the

costs but also the GHG emissions associated to biodiesel.

Furthermore, the production process is subject to uncertainty because the
feedstock input composition is a stochastic parameter. Consequently the
technological specifications that the final blend should conform to are in reality

stochastic constraints.

Moreover, for the biodiesel multiobjective blending problem it is very interesting to
know the sensitivity of the solution to technological specifications that are imposed
by the authorities. Although the shadow prices of the model could give this type of
information, the multiobjective nature of the problem dictates a special approach for
assigning the sensitivity of each different objective to the imposed technological

constraints.

In this paper we present the methodology to perform a sensitivity analysis in a
multiobjective Chance Constrained blending problem and an application to the case

of Portuguese biodiesel blending market.

We find that in almost the whole Pareto front only rapeseed and palm oil feedstocks
are used. Regarding the technological constraints, we discover that CFPP (cold filter
plugging point) is the limiting factor for cost effectiveness and IV (lodine Value) for

reducing GHG emissions.
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