
AUA Working Paper Series No. 2015-3
October 2015

Dealing with farm heterogeneity
on modeling agricultural policy:

An Agent Based Modeling
Approach

Dimitris Kremmydas†
Department of Agricultural Economics and Rural Development,
Agricultural University of Athens
kremmydas@aua.gr

Stelios Rozakis
Department of Agricultural Economics and Rural Development,
Agricultural University of Athens
rozakis@aua.gr

Ioannis Athanasiadis
Electrical and Computer Engineering Dept. of Democritus
University of Thrace, in Xanthi, Greece
ioannis@athanasiadis.info

†

Corresponding Author

A preliminary version of this paper was presented in the 20th Annual Workshop on
the Economic Science with Heterogeneous Interacting Agents (WEHIA), in Sophia
Antipolis, in the Côte d'Azur region of France, on May 2015

 Agricultural University of Athens ·
Department of Agricultural Economics
& Rural Development · http://www.aoa.aua.gr

Dealing with farm heterogeneity on modeling agricultural policy:

An Agent Based Modeling Approach

Dimitris Kremmydas
1†

, Stelios Rozakis
1
, Ioannis Athanasiadis

2

1
 Department of Agricultural Economics and Rural Development, Agricultural University of Athens

2
 Electrical and Computer Engineering Dept, Democritus University of Thrace

†
 Corresponding author

Abstract

The Common Agricultural Policy (CAP) has been gradually transformed from directly supporting prices and

production to a decoupled scheme, where farmers receive a payment per hectare regardless of their production

decisions. Within this framework and given the multitude of CAP's objectives, ranging from market competiveness

to multifunctionality of agriculture, the inclusion of the heterogeneity of farms on modeling CAP will continuously

arise in the immediate future as a key research question. In this paper we make a brief discussion of the aspects of

farm heterogeneity within the agricultural policy modeling context and we show that Agent Based Modeling

approach, coupled with Object Oriented System Analysis, is a very good alternative for considering all aspects of

diversity of farms. Finally we present Agroscape, a flexible ABM Agricultural Policy Framework that can easily

incorporates both behavioral and capacity heterogeneity presenting a proof-of-concept case study.

Keywords: Agricultural Policy, Agent Based Modeling, Object Oriented System analysis, Farm heterogeneity

JEL Codes: Q12, Q18, C63

1 Introduction

“Heterogeneity” (from Greek ετερογένεια / heterogeneia, i.e. of different family/gene) is defined as

“the quality of being consisted of dissimilar or diverse ingredients or constituents”. The term can refer to

two things: (a) the fact that farms, within a specific geographical area, differ from each other in almost

all of their aspects (local heterogeneity) and (b) that between two distant regions the distributions of

farm characteristics are different (inter-regional heterogeneity). In this paper we focus on local

heterogeneity.

The need for employing a discussion focusing on farm heterogeneity emerges from the last (European)

Common Agricultural Policy (CAP) reform. More specifically, the CAP-2020 reform introduces a number

of new objectives, such as advancing agricultural productivity, securing fair farmers’ income, even in less

advantaged areas, maintaining food security through the promotion of the respect of certain standards,

safeguarding the sustainable management of natural resources and the protection of the viability of

rural economy.

The proposed means to achieve the above goals are also innovative. Indicatively, there are measures to

facilitate collective investment; assist small farms to develop; foster knowledge transfer and innovation;

enhance competitiveness; promote food chain organization & risk management; restore, preserve &

enhance ecosystem services; promote resource efficiency and transition to a low-carbon economy;

promote social inclusion, poverty reduction and economic development in rural areas. All of those

measures have a local and non-aggregate dimension and so the individual characteristics of farms

should be taken into account by policy modelers.

Furthermore the new CAP departs from a status where strict rules were applied for all member states,

introducing implementation flexibility. The member states are equipped with a toolbox of measures that

can fine tune in order to cater their specific needs. Consequently, national policy makers are required to

make more focused decisions. In this manner considering farm heterogeneity is applicable in the design

of the CAP policy.

In this paper we discuss some aspects of farm heterogeneity within the agricultural policy modeling

context arguing that Agent Based Modeling (ABM) approach is a very good alternative for dealing with

it. Finally we present an ABM framework, capable of incorporating the various forms of farm

heterogeneity and provide some proof-of-concept results.

2 Theoretical Considerations

2.1 Aspects of farmer's heterogeneity

Given that the scope of the paper is focused on agricultural policy the discussion will be confined to

aspects of farm heterogeneity that concern CAP. This is already a wide scope, because as mentioned

above, this policy is concerned with many facets of an agricultural system (technical, economic,

environmental, and social).

There is an evident first layer of farm heterogeneity which could be termed as “endowment

heterogeneity”. Farms own land of different soil quality and have different initial land and labor

endowments. This kind of heterogeneity is most often included in farm models mainly by differentiating

farm yields and variable costs.

A second layer could be the “managerial ability heterogeneity” referring to both technical and

economic efficiency of the farm management. In this layer only operational (short-term) and tactical

(mid-term) managerial decisions are included. As usually observed in farm efficiency analysis case

studies, there is a significant variation between farms in managerial ability (Nuthall, 2001) and it is of

interest to policy makers since it is an essential factor in successfully explaining varying agricultural

output and supply relationships. There exist several studies providing explanations of this variation. As

Nuthall (2009) argues, managerial ability is related to education, training and intelligence, age and

experience and also “to social capital which involves the networks a manager may have, as well as the

relevant components of the current culture”.

A third layer of heterogeneity is about the strategic orientation of farms, i.e. theirs long-term goals and

how the take decisions, which could be termed as “decision making heterogeneity”. In the literature it

is widely recognized that not all farms are profit maximizers. Apart from the “satisficing” principle and

the notion of bounded rationality that Simon (1957) introduced, there is the case of the multiplicity of

goals –potentially modeled in a multi-objective problem, for example in Karanikolas et al. (2013). There

is evidence that the age of the farm manager is a significant factor shaping his behavior.

2.2 Including farmer's heterogeneity in Agricultural Policy models

Farm heterogeneity could be included in the agricultural policy discussion in two modes. Firstly as a

factor that differentiates the impact of a policy from one farm to another, or from one group of farms to

another, and thus is used in the result analysis stage in order to get a more detailed view of the final

state of the system (result analysis mode).

Secondly as a factor that has an endogenous effect on the results of the policy, and thus is included

directly into the model (modeling mode). An example of the latter can be found at Liu et al. (2007): “the

socioeconomic differences among people in a relevant case study lead to different choices and

behaviors, which in turn result in very different ecological outcomes than one would find were everyone

to have the same preferences for ecosystem services”. Another case of heterogeneity “modeling mode”

would be in the case of Agricultural Value Chains (Nolan, 2009). As noted, “modern agricultural systems

(production, distribution, marketing) are in a state of transition, with increasingly numerous and

heterogeneous agents interacting in the value chain”. Comprehension of the function of this value chain

should include the endogenous modeling of the heterogeneity of the relevant agents.

For short to mid-term models it is reasonable to assume that ignoring endogenous effects of

heterogeneity will be a good approximation of reality. On the other hand, for long term modeling, like

human – nature interaction is, heterogeneity becomes a crucial element of the modeling process.

Nevertheless, representing heterogeneity in policy models can have some intrinsic limitations. As

Heckelei (2013) notes, current agricultural databases have a limited level of detail. Thus heterogeneity

ends, at the good scenario, being inferred through statistical methods . Also the spatial heterogeneity

should be specifically relevant for a particular policy impact otherwise the benefits are questionable.

This argument apparently holds for any kind of heterogeneity.

3 The Agent Based Modeling approach

3.1 The Agroscape ABM Framework

3.1.1 Design Principles

The Agroscape ABM is a modeling framework with the aim of facilitating the modeling of a variety of

agricultural production systems. Its design is based on the following principles:

(a) The agricultural production system, being a coupled human – nature system, is a complex adaptive

system. It contains reciprocal and feedback loops exhibiting nonlinearities like thresholds (Liu et al.,

2007). Since the agricultural policies are increasingly focusing on environmental goals, the modeling

process should incorporate this complexity.

(b) A good approach for modeling complex systems is Object Oriented Analysis and Design (OOAD).

Briefly, OOAD is about structurally and functionally decomposing a system into smaller units with less

complexity and less responsibilities (Booch, 2007). The collaboration of those simpler components is

considered to provide the functionality of the system-as-a-whole (Solms, 2014) and thus the question of

modeling the complex system is transformed in the questions of modeling many smaller and simpler

(non-complex) components and their interactions. More technically OOAD is about applying the

principles of abstraction, encapsulation, modularity and hierarchy to the system under consideration.

Although OOAD is very closely related to software design, the last two decades is applied to other

disciplines as well.

(c) The Agent Based Modeling is an adequate approach for modeling complex adaptive systems using

OOAD. It is evident that ABM fits very well with the concepts of Object Oriented Programming,

representing agents as software objects and focusing on their interaction.

3.1.2 Main Modeling Elements

Agroscape is programmed in Repast Simphony
1
, which is a Java ABM programming framework

providing an ABM scheduling namespace and many visual enhancements. Since our framework is

actually build upon the Repast Simphony Object model we present briefly its essential elements:

1. The Context interface is actually a Collection that holds simulation objects. Contexts can include

other contexts, thus providing the ability to the modeller for creating hierarchies of collections

of agents. Contexts support Projection and Data Layers classes. All objects in Repast start their

life in a root Context.

2. The Projection interface is a collection of relations between simulation objects. Spatial or

network relationships are represented by corresponding projections. A Projection is always

attached to a specific context, imposing a structure upon the contained agents. Apart from

Continuous and grid space implementations there are also GIS and Network implementations of

this interface

3. The Data Layer interface allow the efficient handling of the interaction between agents and

data. A Data Layer can be either an abstract matrix attached to a context or a matrix attached to

a Grid Projection thus storing one value for each grid's cell (GridValueLayer).

One can see in detail the class hierarchy of Repast in its API documentation
2
.

Regarding Agroscape, the skeleton of the framework is shown in the UML 2.0 class diagram on Figure 1.

The two core classes are Farmer and Space, the former being a POJO (Plain Old Java Object) and the

latter a Grid Projection, i.e. a pixeled surface where all activity is taking place. The simulation can also

contain many PropertyGridValueLayer (a Data Layer class) objects, i.e. spatial properties (e.g. soil

quality, crop suitability, nitrates concentration etc.). Farmer is related to Space indirectly through Plot,

which is a logical grouping of space and this is realized through a LandRegistryAuthority class that is

responsible for the bookkeeping of the ownership of the Plots. The actual ownership relation is between

a HumanAgent and a Plot, since it is expected that also non-Farmers might own land. Farmer is also

related to Space by the residentIn association. Additionally, all Farmer objects exist within a

FarmerContext object. The latter can contain an arbitrary number of Network objects, representing

various kinds of relationships between farmers, for example a social network, an information exchange

network, etc. The activity of the agents is realized through attached behaviors, contained in

FarmerContext and explained in more details right after. The behaviors scheme provides modeling

extensibility, since new behaviors are easy to be added.

1
 http://repast.sourceforge.net/repast_simphony.php

2
 http://repast.sourceforge.net/docs/api/repast_simphony/

Figure 1, UML class diagram of the Agroscape skeleton

3.1.3 The Behavior Package

The aspired flexibility of Agroscape is founded on the idea of the “behavior package”. The agents that

are defined in the skeleton of the framework are idle by default. In order to act they need to be

attached to one or more behavior classes. A behavior class is an implementation of an action, like taking

production decisions, realizing production, making transactions in a land market, deciding for the

adoption of a new technology, etc. It is an OOAD way of programming agents in the simulation’s

timeline.

If ones tries to implement many kind of behaviors for a specific agent with the conventional way of

hard-coding them directly into its namespace, the maintenance of the code becomes cumbersome and

very possibly conflicts appear between them. On the other hand, the “behavior package” is an

innovative and pluggable approach to implement and addi new behaviors to various agents of the

simulation is easy and also keeps the modeling complexity in manageable levels.

That is because the behaviors are independent of each other and use only the core classes of the

simulation, as described above, without being affected by their properties. The modeler of a certain

behavior is also absolutely responsible for scheduling its operations and implementing the logic, without

being affected by other already implemented behaviors. Furthermore one behavior that is attached to

an agent can also use objects from another behavior of the same agent, since they are all connected to

the same agent object. Finally modelers have the possibility to attach different set of behaviors to

different agents.

In the implementation side, the idea is based on IScheduledBehavior interface which defines a single

getAnnotatedClass method, returning an object containing ScheduledMethodAnnotation annotations.

This annotation class defines several properties of a method’s scheduling, like the start and interval ticks

of the simulation clock. In this way the modeler have full flexibility on the timing of behaviors. What is

left is to model the behavior of the agent.

In order to do so, he has to extend the abstract AFarmerBehavior class that contains a reference to the

Farmer object that exhibits the behavior and also implements IScheduledBehavior. Also, since frequently

all agents that are attached to a specific behavior will need to either access common classes, or

communicate with each other, all behaving objects are contained in an extension of a ABehaviorContext.

This context also contains a IscheduledBehaviorDataLoader object that is responsible for loading all the

behaving objects into the context and also adding their behavior to the simulation’s schedule.

A simple illustrative example of a behavior is given in Appendix.

Figure 2, Class diagramm of Behavior package

3.2 Catering for Farm Heterogeneity with the Agroscape framework

Our approach for representing heterogeneity deviates from searching for a suitable typology, where a

classification according to certain macro-indicators is performed and certain farm types are derived, e.g.

Amico et al. (2013). Rather than performing a statistical analysis of the observed outputs we facilitate

the analysis of the production system in terms of system components and theirs relations and embed

the heterogeneity in agents’ state, actions and interactions.

Following the “behavior package” approach, the various forms of heterogeneity is not modeled directly

into a Farmer object but rather is embodied in the individual behavior classes. This approach, although

does not seem very natural, is not limiting at all, because any behavior class can exchange information

with the skeleton classes of the model.

More specifically, as far as land endowment heterogeneity is regarded, any behavior can have access to

the plots that a farmer use and so has access to spatial diversity through the PropertyGridValueLayer

class. For capital and labor endowment heterogeneity, a behavior can introduce attributes that express

this fact, as shown in the case study.

As far as “managerial ability heterogeneity” is concerned, one approach would be to model managerial

ability as a [0,1] coefficient that is multiplied with expected yield to give the actual yield, differentiating

efficient farmers. Another approach would be to make a low-level modeling of the technical or

economic decisions that a farmer is following, embedding managerial details. A relevant modeling of the

production realization is shown in Daydé et al. (2014). Although that approach seems to be much more

complex, the Agroscape framework could easily facilitate it, showing that the OOAD benefits.

Also decision making heterogeneity is very easily modeled within the proposed framework. Farmers can

easily be attached to different specific decision making behaviors interacting with other simulation

elements very easily. Furthermore already implemented decision making models can be incorporated to

an Agroscape model, utilizing the flexibility and the power of the Java programming language. For

instance, since there are many farm models written in GAMS mathematical programming software, a

special adapter class could be crafted to use the already written code for a production behavior.

In order to illustrate the above arguments, a simple proof-of-concept case study has been implemented,

where farmers own land of different crop suitability and exhibit varying behavior. One can first examine

the appendix for an even simpler “hello-world” example.

3.3 A proof-of-concept case study: The arableCropProduction Behavior

Arable Crop yearly decisions have been extensively used in agricultural policy modeling over the last

decades. An elementary model can be represented as a linear programming problem where an

individual farmer � is supposed to choose a cropping plan ��� and input use among technically feasible

activity plans �� ∙ ��� ≤ �	�� so as to maximize gross margin
��. The optimization problem for the

farmer � can be expressed as follows (Kremmydas et al., 2012):

() (){ }
() ()

1

max , , |

s.t.

0

f

n
f f f f f f f

i i i i i i i
x i

f f f f f m n

f n

gm p p ps y ls c x
=

×

 ≡ + + −

≤ ∈

≥ ∈

∑x

A x b A

x x

�

�

θ κ

θ θ

(1)

Where

The � × matrix �� and the � × 1 vector �	��represent respectively the technical coefficients and the

capacities of the � constraints on production. The vector of parameters �� includes yields for crop �

(��
�

), variable costs (��
�

), prices dependent on quality (��
�

) and subsidies linked to crop quantity (���
�

).

Symbol stands for the vector of general economic parameters which includes prices not dependent on

farm (��) and subsidies specific to crop cultivated area (���).

Below we describe the transformation of such an elementary model to an agent based model, following

the “Behavior package” approach.

3.3.1 The ArableCropProductionBhv

Following the OOAD principles we decompose the above linear programming problem domain to its

constituent elements, representing each as a different class. We also provide additional elements in

order to represent the spatial dimension, not currently available to the above formulation, and we

finally introduce classes for different decision making strategies (linear programming being one member

of the set of strategies). All of the derived classes are related to the skeleton classes of the Agroscape

framework that has already been presented in 3.1.2.

Thus the derived classes of the domain are:

1. ArableCropCultivation represents the various crop cultivations that are available, e.g. maize,

durum wheat, barley, etc.

2. ArableCropProductionDecision is a map from a Plot (see 3.1.2) to an ArableCropCultivation,

denoting the fact that the farmer's decision is actually the assignment of an arable crop to each

of the owned plots.

ExpectedCropPrices, ExpectedPlotCropVarCost and ExpectedPlotCropYield are the corresponding

elements of the farmer's objective function. So a farmer has certain expectations about the next

year's prices of a crop output (ExpectedCropPrices) and he has an expectation regarding the

variable cost and the yield of the "Crop x Plot" combinations. In the current paper exercise we

implemented the formation of those expectations to be really simple (taken from pre-defined

values plus/minus a random number). In the future we could implement a more realistic but

complex modeling of how those expectations are formed (e.g. prospect theory, evolutionary

algorithms, through networking with other farmers, etc.) and here the power of the OOAD

approach emerges: Even if we would insert into the model such complex procedures, we need

only to change the respective Expectation class while the rest of the model would left intact.

That is because we first tackled the complexity of the relationships between the various classes

of the domain, modeling the points of contact between them, and encapsulated the complexity

of the classes into themselves. In this way OOAD releases the modeling process from the burden

of dealing with the complexity of each element of the system at the same time.

Figure 3, An overview of the arableCropProductionBehavior

3.3.2 Data and Results

The data management issue on modeling agricultural policy cannot be overlooked. The transformation

and loading of data for such models is usually cumbersome, especially if ones goes to plot-level detail or

include spatial data, since modeling software (like GAMS) does not provide explicit data handling

mechanisms.

Although the data used in this exercise was fictitious, we followed the OOAD approach in the data

management aspect, unbinding the mechanics of the model with the data loading process and hopefully

giving more flexibility to potential modelers.

In order for loading data into the Agroscape framework, the IScheduledBehaviorDataLoader<T> shall be

implemented. This interface defines the setup(ABehaviorContext<T> container) method that is called for

each behavior loaded during the initialization of the simulation and the ABehaviorContext<T> top

context is passed. The implementation should be done so as all AArableCropProductionBhv<T> objects

are loaded in the container.

In our example case we kept all data in an excel sheet, as shown in figures 4 - 7. In order to load the data

we created an ExcelDataLoader class implementing the required interface. In Figure 8 we show the

essential part of the code. The class creation takes the excel workbook and the setup method, that is

called from the simulatin initation procedure provides the container that the data loader class loads

AArableCropProductionBhv objects with private and unexposed functions. If one wants to load data

through a different excel structure, then he has to change the internal functionality of ExcelDataLoader

(or write a new implementation) without being concerned about the stability of the overall model.

Figure 4, Excel Data for the Crop Suitability of maize

Figure 5, Data for assigning decision

strategies to farmers

Figure 6, Data for creating the network

Figure 7, Data for Land

Property Registry

Figure 8, ExcelDataLoader essential part

After loading the data the simulation was run for a certain number of iterations, recording the decisions

of the farmers. We recorded data through the relevant time-saving Repast Simphony mechanism. For

example the allocation of the crop to plots was recorded in a video and a graph of the total land per

crop was also easily configured to output. The vibration of the surface allocated to the crops is to the

feedback mechanism of the deterioration and restoration of the cropSuitability feature of the model.

Figure 9, The time series of total land per arable crop

Figure 10, Crops to Plots allocation evolving through time

3.4 Conclusions and Future Research

In this paper we attempted, firstly to prove that agent based modeling should be considered as a well

suited modeling approach for dealing with farm heterogeneity in agricultural policy modeling and

secondly to propose an agent based modeling framework (Agroscape) that relies heavily on the OOAD

principles

The advantages of this approach are:

• Endowment and Managerial farm heterogeneity can be represented as easily as in other

approaches. Furthermore space is inherently represented in ABM simulation systems whereas

this in not the case in general.

• Managerial heterogeneity can be modeled more efficiently compared to other approaches

• If the OOAD principles are followed, the managerial heterogeneity modeling can be carried out

without the complexity "explosion" of the modeling process. The latter is present when one

tries to build models that deal with many and different aspects of a system at the same time.

We implemented a proof-of-concept case study with just 5 farmers following two different decision

making strategies for selecting an arable crop to cultivate in one of their owned plots (30X30 grid

containing 13 plots).

Future work could include:

• Incorporate a Land market througth the behavior package mechanism

• Incorporate otherproduction decision behaviors, like Animal Husbandry production decisions

(independently or jointly with arable crop decisions), permanent crop installation and handling

decisions, etc

• Model other key players of the Agricultural value chain and investigate on the interaction with

farmers (e.g. an information exchange network).

• Implement a real case policy evaluation case

4 References

Booch Grady, et al., 2007. Object-Oriented Analysis and Design with Applications (3nd Ed.).Pearson

Education, Inc., Boston, MA, USA.

D. Kremmydas, A. Petsakos, and S. Rozakis. 2012. Parametric Optimization of Linear and Non-Linear

Models via Parallel Computing to Enhance Web-Spatial DSS Interactivity. Int. J. Decis Support Syst.

Technol. 4, 1 (January 2012), 14-29. DOI=http://dx.doi.org/10.4018/jdsst.2012010102

D’Amico Mario, et al., 2013. Agricultural systems in the European Union: an analysis of regional

differences. New Medit, N. 4/2013.

Daydé, C., Couture, S., Garcia, F., Martin-Clouaire, R. (2014). . Investigating operational decision-making

in agriculture. In: Proceedings of the 7th International Congress on Environmental Modelling and

Software, June 15-19, San Diego, California, USA. Presented at 7th Congress on Environmental Modelling

and Software (IEMSS 2014), San Diego, USA (2014-06-15 – 2014-06-19). Downloaded from

http://prodinra.inra.fr/record/258496

Daydé, C., Couture, S., Garcia, F., Martin-Clouaire, R., (2014). . Investigating operational decision-making

in agriculture. In: Proceedings of the 7th International Congress on Environmental Modelling and

Software, June 15-19, San Diego, California, USA. Presented at 7th Congress on Environmental Modelling

and Software (IEMSS 2014), San Diego, USA (2014-06-15 – 2014-06-19). Downloaded from

http://prodinra.inra.fr/record/258496

European Commision, 2013. MEMO: The common agricultural policy (CAP) and agriculture in Europe –

Frequently asked questions, Brussels 26 June 2013, accessed from http://europa.eu/rapid/press-

release_MEMO-13-631_en.htm.

Heckelei Thomas, 2013. General methodological issues on farm level modelling. Chapter in Farm level

modelling of CAP: a methodological overview, Ed. Langrell Stephen, JRC Scientific and Policy Reports,

Herbert A. Simon, 1957. Models of Man: Social and Rational. New York: John Wiley and Sons, Inc

 Jianguo Liu , et al., 2007, Complexity of Coupled Human and Natural Systems, Science 317 (5844), 1513-

1516. [DOI:10.1126/science.1144004]

Jianguo Liu , Thomas Dietz, Stephen R. Carpenter, Marina Alberti, Carl Folke , et al., 2007. Complexity of

Coupled Human and Natural Systems, Science 14 September 2007: 317 (5844), 1513-1516.

[DOI:10.1126/science.1144004]

Juliano J. Assunção, Maitreesh Ghatak, 2003. Can unobserved heterogeneity in farmer ability explain the

inverse relationship between farm size and productivity, Economics Letters, Volume 80, Issue 2, August

2003, Pages 189-194, ISSN 0165-1765, http://dx.doi.org/10.1016/S0165-1765(03)00091-0.

McConnell, D. J. & Dillon, John L. & Food and Agriculture Organization of the United Nations., (1997).

Farm management for Asia : a systems approach. Rome : Food and Agriculture Organization of the

United Nations

Nolan, J., Parker, D., Van Kooten, G. C. and Berger, T., 2009. An Overview of Computational Modeling in

Agricultural and Resource Economics. Canadian Journal of Agricultural Economics/Revue canadienne

d'agroeconomie, 57: 417–429. doi: 10.1111/j.1744-7976.2009.01163.x

Nuthall, P., 2009. Modelling the origins of managerial ability in agricultural production. Australian

Journal of Agricultural and Resource Economics, 53: 413–436. doi: 10.1111/j.1467-8489.2009.00459.x

Nuthall, P.L., 2001. Managerial ability — a review of its basis and potential improvement using

psychological concepts. Agricultural Economics, 24: 247–262. doi: 10.1111/j.1574-0862.2001.tb00028.x

Ondersteijn, C. J. M. & Giesen, G. W. J. & Huirne, R. B. M., 2003. "Identification of farmer characteristics

and farm strategies explaining changes in environmental management and environmental and economic

performance of dairy farms," Agricultural Systems, Elsevier, vol. 78(1), pages 31-55, October.

Pavlos Karanikolas, Stelios Rozakis, Dimitris Kremmydas, 2013. "The multiplicity of goals in tree-

cultivating farms in Greece," Working Papers 2013-2, Agricultural University of Athens, Department Of

Agricultural Economics.

Rob J.F. Burton, The influence of farmer demographic characteristics on environmental behaviour: A

review, Journal of Environmental Management, Volume 135, 15 March 2014, Pages 19-26, ISSN 0301-

4797, http://dx.doi.org/10.1016/j.jenvman.2013.12.005

Solms Fritz, 2014, Object-Oriented Analysis and Design using UML, Book, accessed from

http://www.fritzsolms.net/sites/default/files/documents/ObjectOrientedAnalysisAndDesignUsingUML.p

df

5 Appendix, A “hello world” example: The Stupido Behavior

The implementation of a “hello-world” behavior will now be analyzed. The farmer that is attached to

this behavior prints the value of an internal stupidoProperty every tick and updates this property every

two ticks. The fact that the required stupidoProperty attribute is contained within a StupidoBhv object

and not within a Farmer object enables the controlling of complexity to a manageable level for an

arbitrarily large number of behaviors. That is because every new behavior can be developed without

being affected by other behaviors, since their namespace can be absolutely independent and thus

farmers can be attached to any behavior without programming conflicts. One can see the structure of

the behavior’s files in Figure 11.

StupidoBhv (Figure 13) is the actual behavior object, extending the AFarmerBehavior<StupidoBhv> class.

The AFarmerBehavior<T> class (Figure 14) is actually enforcing the connection between the behavior

object and the farmer object that should be contained there. Since there is an association between the

behavior and the farmer objects, one behavior object can use the other behavior objects attached to the

same farmer. Finally, in order for the StupidoBhv to take action in the simulation’s timeline, it has to

implement the IScheduledBehavior<T> interface. This is actually realized in two steps. First the

getAnnotatedClass (lines 34-36, Figure 13) is implemented, returning the behaving object itself. Second,

in the returned class (in this case any StupidoBhv object), @ScheduledMethod annotations have to be

inserted accordingly. One can see that this is done in lines 23 and 28 (Figure 13) scheduling the

setRandom (every 2 ticks) and print (every 1 tick) methods respectively.

The StupidoBhvContext (Figure 12) is the class that contains all the StupidoBhv objects and acts as a

container of common functionality. The access of the individual behavior objects is facilitated through

the container attribute in StupidoBhv (line 13, Figure 13). In our case we need a common random

generator which is defined in line 18 of StupidoBhvContext (Figure 12). This generator is initialized and

used by all contained behaving objects.

Also one should note that agents in the behavior context are loaded using a

IScheduledBehaviorDataLoader<T> interface. The implementing classes take a collection of farmers,

create the behaving objects and add them to the context and to the simulation timeline.

Figure 11, The structure of the files in the Stupido behavior

Figure 12, The StupidoBhvContext.java code

Figure 13, The StupidoBhv.java code

Figure 14, The AFarmerBehavior source code

