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In the European Union homogenous inflation forces are expected to prevail due to the 

increased economic integration, especially after the creation of the single currency area. 

This expectation is directly related to the issue of inflation convergence which has gained 

increasing attention by both academia and policy makers in Europe. While the examination 

of the core inflation is of great importance for macroeconomic policy, the prominent role of 

disaggregate inflation indices and especially food inflation has been also frequently 

emphasized in the literature. However, the issue of food inflation convergence has been 

largely ignored in empirical studies. This study explores the evolving distribution of the 

food inflation rates in the EU-25 member states, using the distribution dynamics analysis 

and covering the period from January 1997 to March 2011. This analysis rests on the 

assumption that each country represents an independent observation which provides 

unique information that can be used to estimate the transition dynamics of inflation. 

However, we show that inside EU-25, spatial autocorrelation prevails and therefore, the 

independency assumption is violated. To insure spatial independence, the Getis spatial 

filter is implemented prior to the distribution dynamics analysis. The results of the analysis 

confirm the existence of convergence trends which are even more clear after the spatial 

filtering procedure, indicating, on the one hand, the influence of spatial effects on food 

inflation and, on the other hand, the effectiveness of Getis spatial filtering. 
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Introduction 

The issue of inflation convergence has recently gained attention due to its importance in 

monetary unions, for the design of regional policies and for the assessment of the regional 

effects of trade and growth. In the case of the European Union, homogenous inflation is 

expected to prevail due to the increased economic integration, the formation of a single 

market and the formation of the single currency area. 

In the long-run, inflation - as a monetary phenomenon - is determined by money supply 

changes. In the short-run, however, and until the full impact of such changes is felt, other 

forces may also play a role, especially for small range changes of the price index. Such 

forces can be used to explain, at least partially, longer term inflation rate differentials 

(Liontakis and Papadas, 2010).  

The empirical studies on inflation convergence literature explore this issue among different 

regions of a country1 or inside a cluster of countries as the members of the EMU and the 

new EU member states2. However, according to Lünnemann and Mathä (2004), even 

though the available international evidence focuses mainly on core inflation, the usage of 

more disaggregated inflation indices may prove a useful complement in identifying the key 

drivers of aggregate inflation persistence. A disaggregate analysis may uncover inflation 

persistence differences and allow their categorization according to sectors. Moreover, 

several authors provide evidence that core inflation persistence is predominantly driven by 

the most persistent disaggregate inflation components (e.g., Beck, Hubrich and Marcellino, 

2009; Zaffaroni, 2004).  

                                                           
1 e.g. Nagayasu, (2012); Yilmazkuday, (2009); Roberts, (2006); Cecchetti, Mark and Sonora (2002). 
2 e.g. Lopez and Papell, (2010); Busetti et al., (2007); Weber and Beck, (2005); Holmes, (2002); Kocanda and Papell, (1997). 
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In the above context, the examination of a disaggregated inflation index like the food 

inflation index is of great interest. Moreover, food inflation presents some special 

characteristics that make its examination even more important. As Walsh (2011) 

emphasizes, food inflation is in many cases more persistent than nonfood inflation, and 

food inflation shocks in many countries are propagated strongly into nonfood inflation. 

Under these conditions, and particularly given high global commodity price inflation in 

recent years, a policy focus on core inflation may be highly misleading and suffering by 

severe lags in policy responses. 

The food price spike preceding the 2008 global financial crisis set off a number of studies 

on the role of food price inflation in the development of monetary policy. Catão and Chang 

(2010) point out the distinctive role of food in household utility and claim that the presence 

of high food price volatility may have important implications for the welfare effects of 

different monetary policy regimes. Moreover, as Anand and Prasad (2010) conclude, in an 

environment of credit-constrained consumers, a narrow policy that ignores food inflation 

can lead to suboptimal outcomes. 

Several authors provide possible explanations for the food inflation differentials inside EU. 

Fousekis (2008) points out the fragmentation of the European market and claims that 

inflation rate differentials are not efficiently confronted by horizontal EU measures but by 

changes in countries’ market structures. Altissimo, Benigno and Palenzuela (2011) 

emphasize the importance of different responses of EU countries to common, Euro-area 

shocks. Similarly, Bukeviciute, Dierx and Ilzkovi (2009) argued that food price inflation 

differentials are caused by the different ways and degrees in which the food supply chains 

of member states absorb external shocks such as the rapid increase of energy prices. This, 



 3

in turn, occurs due to different food market structures and regulatory frameworks across 

EU. In this sense food price inflation differentials are a signal that the EU food market still 

remains fragmented. Finally, Dalsgaard (2008) and Beck, Hubrich and Marcellino (2009) 

emphasize the role of market concentration, mergers & acquisitions, and cartel formations 

on inflation rate differentials.  

A common way to examine the hypothesis of a homogeneous inflation trend is the 

examination of inflation convergence. A large part of the empirical studies on this issue 

follows the introduction and development of quantitative methods in the area of economic 

growth and convergence (Liontakis, 2012; Liontakis and Papadas, 2010). Consequently, the 

concepts of stochastic convergence and σ-convergence have dominated the relevant 

literature (e.g. Lopez and Papell, 2010; Kutan and Yigit, 2005; Holmes, 2002; Kocenda and 

Papell, 1997).  

Recently, another methodological tool, the distribution dynamics analysis, also borrowed 

from the economic growth literature, has been introduced in the analysis of inflation rates 

convergence (see Nath and Tochlov, 2012; Cavallero, 2011; Weber and Beck, 2005). 

Following these studies, we implement the distribution dynamics analysis on food price 

inflation rates of the member states of EU-25. However, in our study this analysis is highly 

differentiated as it takes under consideration the effect of spatial autocorrelation. According 

to Anselin (1988), the existence of spatial dependence may lead to important distortions as 

it can invalidate the inferential basis of traditional statistics and econometric methods since 

the assumption of observational independence no longer holds (Anselin, 1988). In the 
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analysis of inflation convergence, this issue has not yet gained any attention3. In this study, 

we control spatial autocorrelation using the Getis filtering approach (see Getis 1995), which 

is based on the local spatial autocorrelation statistic iG  (see Getis and Ord 1992). 

Data used consist of monthly observations of the absolute food inflation deviation from the 

mean (based on the Harmonized Indices of Consumer Prices - HICP - for the “food and 

non-alcoholic beverages” index) and covers the period from January 1997 to March 2011.  

The examination of the evolving distribution dynamics is conducted using a kernel density 

estimator that has been proposed by Hyndman, Bashtannyk and Grunwald (1996). This 

estimator was firstly introduced in the growth and income convergence literature by Arbia, 

Basile and Piras (2005) and thereafter, several empirical studies have been based on this 

estimator. 

Studies on Food inflation convergence 

Despite of its importance, the issue of food inflation convergence has been largely ignored 

in the relevant literature. In the few studies that examines this issue, the analysis is narrow 

and the results are just presented without any further interpretations. Weber and Beck 

(2005), examined the inflation convergence in two samples of European countries. For this 

purpose, they used Harmonized Indices of Consumer Prices of the total price index as well 

as for 12 sub-indices. Although β-convergence was found for the “food and non-alcoholic 

beverages” index, it was slower for the period after the introduction of the common 

currency, implying the existence of non-linearities in the convergence process. 

Dayanandan and Ralhan (2005), find evidence of β-convergence for the food price index in 

                                                           
3 According to our knowledge, the role of space has been acknowledged in two studies. Vaona and Ascari (2010) explore the regional 
patterns of inflation persistence in Italy showing that inflation persistence at the national level does not present any geographical 
aggregation bias. Additionally, Ailenei and Cristescu (2010), show how the food prices in Romania are spatially associated. 
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Canada, using panel unit roots tests. Sturm et al. (2009) estimate σ-convergence and β-

convergence for the consumer price indices of several commodity groups - including food 

commodities - and for different groups of European countries. Their results vary 

considerably on the type of convergence explored (β-convergence or σ-convergence), on 

the countries that consist of the groups (EMU members or non-EMU members) and on the 

time period under investigation. 

In the study of Fan and Wei (2006), panel unit root tests are used to study convergence of 

the food price inflation rates across 36 major Chinese cities and over a seven-year period. 

The authors find contradictory results on β- convergence, depending on the panel unit root 

test implemented and the time lag selection model. 

Liontakis and Papadas (2010) investigated the existence of inflation rate convergence in the 

EU-15 from 1997 to 2009, using the stochastic convergence analysis and the distribution 

dynamics approach. Their study refers to the “food and non-alcoholic beverages” product 

group as well as to eleven food product subgroups. Parametric analysis indicates no 

stochastic convergence for the “food and non-alcoholic beverages” group and for almost all 

food product subgroups. Opposed to the parametric results, the general finding of the 

nonparametric distribution dynamics analysis is that food inflation tends to move 

backwards to the mean. Similarly, Liontakis (2012) examines the mean reversion attitude of 

food price inflation rates in the Eurozone, using distribution dynamics analysis and panel 

unit root tests. Mean reversion shows up in different time periods and in different food 

groups. Moreover, the analysis of distribution dynamics sheds light to different aspects of 

convergence and highlights processes like club formation and polarization. 
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Data, Variables, and Some Descriptive Statistics 

Annualized inflation rates at time t ( t ) are estimated as annual percentage changes of the 

harmonized consumer price index at time t ( tP ) as follows:  

 12100(ln ln )  t t tP P  (1) 

Absolute food inflation deviation from the mean ( tx ) is estimated as: 

 | |  t t tx
 
 (2) 

where  t  represents the average inflation of the EU-25 countries. Table 1 provides the 

mean and standard deviation for tx . Moreover, it provides the relative ranking of each 

country based on its mean absolute food inflation deviation value throughout the period 

under investigation. Countries are presented in this table according to their relative ranking. 

On average, Hungary and Lithuania have the greatest absolute food inflation deviations 

from the mean during the period under investigation, while Belgium, Austria, Denmark and 

Luxemburg have the lowest. The high standard deviation values reflect the great volatility 

of tx . 

To get a clearer picture on the evolving distributions of tx , we further investigate two sub-

periods; before and after the EU enlargement. While the countries that possess the lower 

and higher relative rankings have a similar ranking position in both sub-periods, this is not 

true in all cases. The most intense changes occurred in two east European economies, 

namely Slovenia and Latvia that jumped 15 places back and 17 places forth in the relative 

ranking, respectively. Other prominent ranking differences among the two subperiods are 

France and Finland that rank 1st and 5th after the EU enlargement, respectively.  
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Figure 1. Evolution of absolute food inflation deviation from the mean 

Additionally, Fig. 1 presents the evolution of tx  for the EU-15 and the new member states 

and gives an idea of possible spatial effects in EU-25 countries regarding this variable.  

Until 2004, there was a clear trend of reduction of the absolute deviation from the mean, 

especially for the new member states, mainly due to their efforts to fulfill the EU entrance 

criteria. After that, peaks and troughs appear in the evolution of absolute deviation, which 

ends up in a higher level at 2011. 

 
Figure 2. Frequency of inclusion in the L, M and H food inflation groups. 

 

The volatile nature of absolute food inflation deviation is also revealed in Fig. 2. Three 

groups of absolute food inflation deviation were constructed according to the relative 
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ranking of each country at each month. Groups L and H (low and high group) include the 

first and last 8 countries in the relative ranking, respectively, while group M (medium 

group) includes the rest 9 countries (9th to 17th position). The frequency of inclusion in each 

group shows that many East-European countries like Hungary, Latvia and Estonia are 

usually placed in the high absolute inflation deviation group. On the other hand, some core 

European countries like Austria, Belgium and Luxemburg are usually placed in the low 

absolute inflation deviation group.  

The above descriptive statistics reveal the high degree of complexity of the data. Beyond 

economic policies (common or less common), country-specific and product-specific factors 

may contribute to the observed food inflation “heterogeneity” among countries. Moreover, 

strong indications of spatial associations are identified, especially for the groups of East 

European and core European member states.  

Methodology 

The indications of spatial association that stems from the descriptive statistics can be 

further explored using the Getis local ( )iG d index. ( )iG d is the spatial autocorrelation 

statistic of Getis and Ord (1992), which is defined as: 

 
1 1

( ) ( )
 

  
n n

i ij j j
j j

G d w d x x  for j≠i (3) 

where ( )ijw d are the binary elements of the spatial weight matrix that takes value one for 

all features being within distance d of a given feature i, and zero otherwise. The numerator 

in (3), is the sum of all features’ x  that are located inside a radius d from feature i (except i 

itself). The denominator in equation (3) is the sum of all features’ x .  
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Therefore, this statistic shows whether features with either high or low values cluster 

spatially, within a radius of length d from point i (spot). A feature with a high/low value 

that is also surrounded by other features with high/low values is called a hot/cold spot. 

When the local sum is much different than the expected local sum4 and the difference is too 

large to be the result of random chance, a statistically significant Z score comes up5. 

In our study, spatial dependence may arise from a variety of measurement problems, as 

well as interactions or externalities across countries such as trade. These factors could be a 

major source of violation of the independence assumption (Fischer and Stumpner, 2010). 

Apart from any specific reasons, a violation of the independence assumption may result in 

misguided inferences and interpretations (Anselin, 1988).  

A spatial filter can be used to transform a spatially autocorrelated variable into an 

independent variable by removing the spatial dependence embedded in it. The original 

variable, x, is hence partitioned into two parts, a filtered non-spatial variable ( x ) and a 

residual (Getis, 1995). A commonly used spatial filter is the Getis filter which is used to 

separate spatial effects from the variable’s total effects. By insuring spatial independence, it 

allows us to use the stochastic kernel to properly estimate the underlying food inflation 

distribution and to analyze its evolution over time.  

The value of d should represent the distance within which spatial dependence is maximized 

The approach to identify the appropriate distance d is based on finding the value of d that 

corresponds to the maximum absolute sum of the normal standard variate of the statistic 

( )iG d for all i observations of the variable x. This single value is chosen since it represents 

                                                           
4 The value of Gi when the variable is randomly distributed over space. 
5 According to Getis and Ord (1992), under certain conditions, Gi distribution approaches normality and thus the z-score can be used to 
assess the statistical significance of Gi value. 
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the distance beyond which no further spatial association effects increase the probability that 

the observed value is different than the expected one (Getis, 1995). 

The filtered observation ( ix ) is given as: 

 
1

( )
1

    
i i i ix x W G

n
 (4) 

where n is the number of observation and iW  is a spatial weight matrix, defined as: 

 
1

( )
n

i ij
j

W w 


  for j≠i (5) 

Equation (4) compares the observed value of ( )iG  with its expected value 1W n . 

[ ( )]iE G  , represents the realisation, x , of the variable x at feature i when no spatial 

autocorrelation occurs. If there is no autocorrelation among the feature i and its neighbors 

then the observed and expected values, ix  and ix , will be equals.  

After insuring spatial independence, the analysis of distribution dynamics can be safely 

applied. The distribution dynamics analysis was firstly introduced in the convergence 

literature (see Quah, 1993) in order to provide an insight on the dynamics of the whole 

cross-sectional distribution. The main idea is to find a law of motion that describes the 

evolution of distribution over time. One of the techniques most commonly used involves 

the calculation of stochastic kernels (see Durlauf and Quah, 1999). This approach is based 

on the estimation of the conditional density of a variable y given a variable x. In our study, 

x, refers to the absolute deviation of a country’s food inflation from the average at month t, 

and y, refers to the absolute deviation of a country’s food inflation from the average at 

month t+12 (transition period equal to 12 months). Thus, the conditional density function 
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describes the probability that a country will move to a certain level of absolute inflation 

deviation from the cross-sectional mean at time t+12 given its current inflation rate 

deviation (time t). 

The traditional stochastic kernel estimator is defined as: 

 ˆ ˆˆ( ) ( , ) / ( )f y x g x y h x     (6) 

where   

 
1

1
ˆ ( , )  




  
     


n

i yi x

i

y Yx X
g x y K

na a
  (7) 

is the estimated joint density of (X, Y) and  

 
1

1ˆ ( )
n

i x

i

x X
h x K

na a







 
 
 

   (8) 

is the estimated marginal density. In the above equations, α, β, are bandwidth parameters 

controlling the smoothness of fit, .
x
and .

y
are Euclidean distance metrics on spaces X and 

Y respectively and K(.) is the Epanechnikov kernel function. The conditional density 

estimator can be rewritten as: 

 
1

1ˆ ( ) ( )  




 
  
 


n

i y

i
i

y Y
f y x w x K   (9) 

where  

 
1

( )
n

ji x x
i

j

x Xx X
w x K K

a a




  
       

   (10) 

This estimator is the well-known Nadaraya-Watson kernel regression estimator. Equation 

(9) shows that the conditional density estimate at x can be obtained by the sum of n kernel 
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functions in Y-space weighted by the { ( )}iw x in X space. Using ( )iw x , the estimator of the 

conditional mean is given as: 

 
1

ˆˆ ( ) ( ) ( )
n

i i
i

m x yf y x dy w x Y


     (11) 

Hyndman, Bashtannyk and Grunwald (1996) noticed that when the conditional mean 

function has an exacerbate curvature and when the points utilized in the estimation are not 

regularly spaced, the above estimator is biased. In order to correct for this bias, they 

propose an alternative estimator with better bias properties and a smaller integrated mean 

square error.  

As far as the bandwidth selection is concerned, the Bashtannyk and Hyndman (2001) 

algorithm is applied. These authors proposed a three-step strategy for bandwidth selection. 

The first step includes the estimation of β using a rule of thumb, like the one proposed by 

Silverman (1986). The authors provide a rule which is based on the assumption that the 

underlying marginal density is normal and the conditional density has a constant variance.  

Then, the choice of bandwidth is based on the minimization of the Integrated Mean Square 

Error (IMSE). According to Bashtannyk and Hyndman (2001), this rule is surprisingly 

robust and gives reasonable results even for densities which are quite non-normal.  

The second step includes the estimation of α, using the regression-based method of Fan, 

Yao and Tong (1996). These authors noticed that the conditional density estimator obtained 

by equation (9) for given values of x and y is the value of b that minimizes the weighted 

least-squares function: 2( ){ ( ) }  i iw x y b , where 1( ) (| | /  i iy c K Y y c  is a kernel 

function. For a given bandwidth c and a given value y, finding ˆ ( )f y x  is a standard 
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nonparametric problem of regressing ( )i y on X. Fan, Yao and Tong (1996) use the above 

fact to define local polynomial estimators of conditional densities. Bashtannyk and 

Hyndman (2001) further exploit this idea by modifying the bandwidth selection method 

proposed by Hardle (2001)6 to derive an alternative method for selecting the bandwidth α 

given the bandwidth β, from the first step. 

The third step includes the re-estimation of β, given α from the second step, using the 

bootstrap method of Hall, Wolff and Yao (1999) for bandwidth selection in local 

polynomial estimators, that has been modified by Bashtannyk and Hyndman (2001) to 

cover the estimation of conditional density functions. The second and the third steps may 

be repeated several times until the extraction of robust α and β estimates. According to 

Bashtannyk and Hyndman (2001), this strategy provides a relatively fast and accurate 

approach to find optimal bandwidths7.  

In addition to the reduced bias estimator, Hyndman, Bashtannyk and Grunwald (1996) 

proposed two new ways to visualize the conditional densities, namely, the “stack 

conditional density” (SCD) and the “high density region” (HDR) plots. The former was 

introduced for the direct visualization of the conditional densities, which is considered as a 

sequence of univariate densities. Thus, it provides better understanding than the 

conventional three-dimensional perspective plots. If the mass of the distribution 

concentrates parallell to x-axis line at zero point, it is an indication that any existing 

deviation in time t almost disappears at time t + τ (convergence or mean reversion). On the 

                                                           
6 Hardle (1991) describes selecting the bandwidth for regression by minimizing the so-called: “penalized average square prediction 
error”. 
7 Throughout the literature, several procedures have been proposed for the estimation of the optimal bandwidth. In this study we choose 
the strategy proposed by Bashtannyk and Hyndman (2001) as it has several advantages and it has also been widely used in distribution 
dynamics analysis (e.g. Peron and Rey, 2012; Maza, Hierro and Villaverde, 2012; Fischer and Stumpner, 2010; Arbia, Basile and Piras, 
2005). 
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other hand, if the mass of the distributions is located on the 45o degree line (when t and t + 

τ axes are similarly scaled), the existing deviations at time t still exist at time t + τ 

(persistence).  

The HDR plot consists of consecutive high density regions. A high density region is 

defined as the smallest region of the sample space containing a given probability. These 

regions allow a visual summary of the characteristics of a probability density function. In 

the case of unimodal distributions, the HDR are exactly the usual probabilities around the 

mean value. However, in the case of multi-modal distributions, the HDR plot displays 

multimodal densities as disjoint subsets. 

When examining the “high density region” plots, we observe whether the 25% or the 50% 

HDRs are crossed by the 45o diagonal (again, t and t + τ axes should be similarly scaled) or 

if they are crossed by the horizontal line that crosses the vertical axis at zero point. When 

the majority of the 25% or 50% HDRs are crossed by the diagonal, strong persistence is 

present. This means that most observations of the variable remain at almost the same 

position after the transition period. If the diagonal only crosses the 75% HDRs, we can 

conclude in favor of law persistence and more intra-distribution mobility.  

On the other hand, if the majority of the 25% or 50% HDRs are crossed by the horizontal 

line that crosses the vertical axis at a point close to zero, there is a strong convergence 

trend, while if the majority of the 75% HDRs are crossed by this line, weak convergence 

prevails. Finally, if some of the 25% or 50% HDRs are crossed by this horizontal line, there 

are evidence of club convergence or polarization. 

The 25%, 50% and 75% HDRs are shown, beginning with the darker shaded region and 

moving to the lighter respectively. Arbia, Basle and Piras (2005) emphasized also the 
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importance of analyzing central points like modes, i.e. the values of y where the density 

function takes its maximum values. This is particularly important when the distribution 

function is multimodal. In this case, the mean and median are only “compromise” values 

among the multiple peaks. The highest modes for each conditional density are 

superimposed as bullets on the HDR plots.  

Results 

The implementation of the local Getis ( )iG d 8 index confirms the indications of spatial 

association provided by the descriptive statistics and reveals the existence of significance 

spatial autocorrelation910,11. As Fig. 3 indicates, in almost all monthly observations of 

absolute food inflation deviation from the mean, there are significant “cold” and “hot” 

spots.  

 

Figure 3. Frequency of Spots (“Hot” and “Cold”) in EU-25 countries, regarding the absolute food 
inflation deviation from the mean in each month observations. 
 

Fig. 4 maps the significant “hot” and “cold” spots, resulting by the examination of the 

median absolute food inflation deviations for each country. The actual iG values and the 

                                                           
8 Source of geographical data: Centroids of EU-25 countries from Eurostat's GISCO NUTS dataset (available at: 
http://epp.eurostat.ec.europa.eu/portal/page/portal/gisco_Geographical_information_maps/popups/references/administrative_units_statisti
cal_units_1). 
9 The null hypothesis of normality is rejected only in the 1.75% cases of monthly observations, using the D’Agostino test. 
10 Distances are measured in terms of geodesic distances between the countries centroids. 
11 The local Getis index (and the associated optimum distance band) was estimated in R. The routine is available upon request.  
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associated z-scores are presented next to the map12. 

Gi E(Gi) z 
CY 0.033 0.042 -0.452 
CZ 0.610 0.583 0.599 
HU 0.524 0.458 1.661* 
LU 0.318 0.417 -2.297** 
LV 0.457 0.333 2.959** 
SK 0.577 0.458 2.601** 
EL 0.265 0.208 1.166 
AT 0.479 0.500 -0.484 
BE 0.319 0.417 -2.282** 
DE 0.499 0.542 -0.946 
DK 0.386 0.458 -1.676* 
EE 0.321 0.250 1.814* 
ES 0.061 0.083 -0.887 
FI 0.203 0.125 2.624** 
FR 0.306 0.417 -2.538** 
IE 0.065 0.083 -0.745 
IT 0.478 0.500 -0.690 
LT 0.457 0.333 2.957** 
MT 0.226 0.208 0.479 
NL 0.309 0.417 -2.408** 
PL 0.589 0.500 1.968** 
PT 0.059 0.083 -0.951 
SE 0.369 0.292 1.867* 
SI 0.495 0.542 -1.016 
UK 0.163 0.250 -2.213** 
* p<.1 **p<.05 

Figure 4. Mapping of the “hot” and “cold” spots in the EU-25 member states regarding the 
absolute food inflation deviation from the mean.  
 
The next step in the analysis includes the applications of the spatial filtering to rule out 

spatial autocorrelation. To illustrate the effect of spatial filtering, we follow Getis (1995) by 

estimating global Moran’s I statistic to see whether spatial autocorrelation remains after the 

spatial filtering. This statistic is estimated in each point in time (every month in our study) 

and it is expressed as follows (Anselin, 1988): 

 
2

( )( )

( )

ij i j
i j

ij i
i j i

w x x x x
n

I
w x x

 





 

 (12) 

where x  is the mean of the x  variable and ijw  are the binary elements of the weight 

matrix, which is estimated using the inverse squared distance (see Getis, 1995).  

Results indicates that, prior to the spatial filtering, global Moran’s I values were significant 

in the 26.9% of the monthly observations (p<.05). It is also important to mention that 

                                                           
12 D’Agostino Test for Normality shows that the median values are normally distributed (K2 statistic =2.1539, p-value: 0.34).  
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spatial autocorrelation was more apparent in the period after 2004 (42.53% of cases). This 

is an indication that the higher level of economic integration in EU, results in the creation 

of more intense spatial linkages that, in turn, lead to higher levels of spatial autocorrelation, 

regarding the absolute food inflation deviation.  After the application of spatial filtering, the 

percentage of significant global Moran’s I values falls dramatically to 4.68% (p<.05).  

Fig. 5 also emphasizes the effect of spatial filtering in reducing the spatial autocorrelation 

by presenting the empirical distribution of global Moran’s I prior and after spatial 

filtering13. It is obvious that prior to spatial filtering, there was significant spatial 

autocorrelation, reflected in the values of global Moran’s I. However, after the application 

of the Getis filter, spatial autocorrelation no longer exists.  

 
Figure 5. Empirical distribution of global Moran’s I statistic using the filtered and the unfiltered 
observations of absolute food inflation deviation.  
 
Fig. 6 presents the conditional density of the filtered observations given the original ones. 

In the absence of spatial effects, one would expect the masses of the distribution to 

concentrate in the 45o line, indicating that the original observations are equal to the filtered 

ones. According to the high density region plot depicted in Fig. 6, this is the case when the 

inflation differentials are low. However, as the level of inflation differentials increases, the 

masses of the distributions concentrate to lower levels of - spatially filtered - inflation 

                                                           
13 Empirical distributions constructed using the Gaussian kernel type and the Silverman rule for bandwidth selection (Silverman, 1986). 

‐0.60 ‐0.40 ‐0.20 0.00 0.20 0.40 0.60 0.80

before filtering after filtering normal approximation
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differentials. Therefore, the observations that correspond to these conditional distributions 

tend to have lower filtered than unfiltered (original) values. This is a sign of greater spatial 

effects at higher levels of inflation differentials. Specifically, the countries with level of 

inflation differential greater than 8 units, show a tendency towards cohesion, when the 

spatial effects are filtered out. Therefore, we conclude that spatial effects account for a 

large part of inflation distribution dynamics in EU-25.  

 
Figure 6. High density region plot of the conditional density of filtered observations, given the 
original observations of absolute food inflation deviation from the mean.  
 
Fig. 7A and 7B present the results from the implementation of the distribution dynamics 

analysis. This analysis is not only applied to the filtered values but also to the unfiltered for 

reasons of comparisons. We begin with the interpretations of the conditional density plots 

derived using the original (unfiltered) observations of the absolute food inflation deviation 

from the cross-sectional mean (Fig. 7A). The conditional density plots indicate that there 

are important convergence trends of the food inflation rates in the EU-25. The absolute 

food inflation deviation tends to diminish after the transition period as the 25% HDR and 

the 50% HDR are located close to the zero point (crossed by a horizontal line that crosses at 

a point near zero. These results are generally in line with Weber Beck (2005), Liontakis and 

Papadas (2010) and Liontakis (2012). 
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This obvious trend of food inflation convergence is not present when food inflation 

differentials are greater than 6 units. After this level, the convergence trends weaken and 

the high density region plot becomes more complex. However, even in higher levels of 

deviations, a weaker convergence trend continues to prevail, as the HDRs are always lying 

on the right of the 45o line, which indicates food inflation persistence.  

 

bandwidths (α, β)=(0.699, 1.069) 

Figure 7A. Intra-Distribution Dynamics of annualized unfiltered inflation rate transitions. Stacked 
density plot (left hand side panel) and HDR plot (right hand side panel). 

 

bandwidths (α, β) = (1.121,1.385) 
Figure 7B. Intra-Distribution Dynamics of annualized filtered inflation rate transitions. Stacked 

density plot (left hand side panel) and HDR plot (right hand side panel). 
 

It is also important to mention that in very low initial levels of food inflation differentials 

(less than one), the corresponding deviation after the transition period tends to be slightly 

higher. Finally, when initial food inflation deviations are close to one, they produce a 

conditional density with a mode equal to one, indicating food inflation persistence. 
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Moreover, the corresponding values after the transition period are not excessively spread, 

as the length of the 75% HDRs is relatively small. This is an indication that countries with 

low food inflation, tends to retain this low food inflation rate, forming in this way a low 

food inflation group. 

The above results can also be identified, by exploring the stack conditional density plot. 

The masses of the conditional densities, produced at low initial values of absolute food 

inflation deviation concentrated close to the zero point of the t+12 axis. This is an 

indication that when initial food inflation deviations are low, the vast majority of food 

inflation differentials, after the transition period, concentrated on a low food inflation level. 

However, as the initial level of food inflation increases, the mass of the corresponding 

conditional density moves to the left, indicating weaker convergence trends.  

Another point of interest in the conditional densities plots is the presence of several 

multimodalities when the level of initial food inflation differentials is very high. In these 

cases, there are more than one mass in the corresponding conditional densities. This means 

that at high food inflation levels, the food inflation deviation after the transition period 

concentrates in two distinct areas; an area of low values (indicating strong convergence) 

and an area of higher values (indicating very weak convergence). This is emerging from the 

multimodal univariate conditional densities in the stack density plot and from the disjoint 

HDRs in the high density region plot. This phenomenon indicates that the existence of a 

very high level of food inflation, can be either a random effect or a short-term shock which 

can be corrected relatively quickly (after the transition period) or a phenomenon with more 

permanent characteristics, which may reflects the situation in countries with high food 

inflation. 
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When examining the conditional density plots that are produced by the filtered 

observations, the signs of mean reversion are even more apparent. The main difference is 

presented in the conditional densities that correspond to higher levels of initial inflation 

differentials. At these levels of food inflation, the absolute deviation from the mean 

decreased after the transition period, indicating strong inflation convergence trends. 

Actually, this result is in line with Fig. 6, where we show that the spatial effects mainly 

appear in the observations with high food inflation differentials.  

On the other hand, the results that refer to the low initial food inflation levels still remain. 

Also, the multimodalities cases almost disappear after the implementation of the spatial 

filtering.  

The above facts provide strong evidence that our previous results are biased due to the 

spatial autocorrelation that contaminates the observations. Ruling out the spatial 

component, gives a clearer image of the mean reversion trends in EU-25 and provide a 

possible explanation for the existing deviations of food inflation from the cross-sectional 

mean. 

Conclusions 

This study applies the distribution dynamics analysis to explore the evolution of food 

inflation in the EU-25, covering the period from January 1997 to March 2011. Unlike most 

studies in the field, it takes the effect of spatial dependence into consideration which can 

invalidate the inferential basis of traditional statistics and econometric methods.  

The presence of spatial autocorrelation was confirmed using the local Getis ( )iG d index. 

The spatial effects was isolated using the Getis spatial filter to isolate the spatial component 
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in the absolute food inflation deviation observations. As Fischer and Stumpner (2010) 

emphasize, this is essential, as the properties of the kernel estimators, under spatial 

autocorrelation, are unknown and therefore, the implementation of the distribution 

dynamics analysis may lead to false interpretations. However, as the authors also claim, the 

lack of an appropriate inferential theory restricts the study mainly to a descriptive analysis. 

The distribution dynamics analysis reveals the existing convergence trends in the food 

inflation rates. Countries with relatively higher or lower absolute food inflation deviation 

are expected to move back towards the mean after the transition period. While the food 

inflation convergence trends are more obvious in relatively low initial food inflation 

differentials, even in higher levels of deviation, a weaker convergence trend continues to 

prevail. The analysis also indicates that countries with low food inflation, tend to retain this 

low inflation level, forming in this way a low food inflation group. Moreover, at higher 

food inflation rates, the trend of convergence diminishes, the conditional densities get a 

more complex structure and several cases of multimodality appear. 

The application of this analysis to both original and filtered observations reveals the 

presence of significant spatial effects that, to some extent, shape the evolving distributions 

dynamics of food inflation. After the spatial filtering, the mean reversion trend is more 

obvious and not limited to relatively low food inflation differentials. Moreover, the 

complexities of the conditional densities and the cases of multimodality in very high 

inflation differentials almost disappear. This, in turn, indicates that in the absence of spatial 

autocorrelation, the hypothesis of homogenous food inflation seems more rational.  
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Table 1 Descriptive statistics for the “Food and non-alcoholic beverages” inflation rates 
 FROM 1997 TO 2011 AFTER 2004 BEFORE 2004 

 
Mean  (SD) Relative 

Ranking 
Mean     (SD) Relative 

ranking 
Mean      (SD) Relative 

ranking 
Belgium 1 (0.75) 1 1.01 (0.76) 2 1 (0.74) 2 
Austria 1.03 (0.78) 2 0.79 (0.6) 1 1.28 (0.86) 6 
Denmark 1.06 (0.81) 3 1.03 (0.88) 3 1.09 (0.73) 3 
Luxembourg 1.11 (0.82) 4 1.13 (0.76) 4 1.1 (0.89) 4 
France 1.3 (1.02) 5 1.81 (1) 10 0.77 (0.72) 1 
Italy 1.58 (1) 6 1.49 (0.74) 6 1.68 (1.22) 13 
Finland 1.66 (1.36) 7 2.11 (1.61) 17 1.19 (0.82) 5 
Germany 1.68 (0.83) 8 1.53 (0.84) 7 1.83 (0.79) 14 
Greece 1.69 (1.34) 9 1.49 (1.1) 5 1.89 (1.52) 16 
Malta 1.72 (1.54) 10 1.96 (1.93) 13 1.46 (0.95) 9 
Spain 1.75 (1.23) 11 1.62 (0.81) 9 1.88 (1.54) 15 
Netherlands 1.76 (1.52) 12 2.2 (1.81) 18 1.29 (0.93) 7 
Sweden 1.79 (0.87) 13 1.96 (0.77) 12 1.61 (0.94) 11 
Portugal 1.84 (1.46) 14 2.06 (1.66) 16 1.61 (1.19) 12 
UK 1.99 (1.45) 15 1.97 (1.64) 15 2.01 (1.23) 17 
Slovakia 2 (1.43) 16 1.97 (1.49) 14 2.04 (1.37) 18 
Ireland 2.08 (1.42) 17 2.6 (1.62) 21 1.54 (0.91) 10 
Czech 2.43 (1.91) 18 1.93 (1.42) 11 2.95 (2.2) 21 
Cyprus 2.59 (1.63) 19 2.45 (1.42) 20 2.73 (1.82) 20 
Slovenia 2.69 (1.75) 20 1.58 (1.36) 8 3.85 (1.32) 23 
Estonia 3.14 (1.98) 21 3.73 (2.27) 24 2.53 (1.4) 19 
Poland 3.3 (2.52) 22 2.41 (1.84) 19 4.22 (2.8) 24 
Latvia 3.66 (3.11) 23 5.82 (2.94) 25 1.42 (0.93) 8 
Lithuania 3.67 (2.17) 24 3.61 (2.25) 23 3.74 (2.09) 22 
Hungary 4.63 (3.81) 25 3.55 (2.29) 22 5.75 (4.68) 25 

Source: Eurostat 
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Figure 1. Evolution of absolute food inflation deviation from the mean 

Figure 2. Frequency of inclusion in the L, M and H food inflation groups. 

Figure 3. Frequency of Spots (“Hot” and “Cold”) in EU-25 countries, regarding the 

absolute food inflation deviation from the mean.  

Figure 4. Mapping of the “hot” and “cold” spots in the EU-25 member states regarding the 

absolute food inflation deviation from the mean.  

Figure 5. Empirical distribution of global Moran’s I statistic using the filtered and the 

unfiltered observations of absolute food inflation deviation.  

Figure 6. High density region plot of the conditional density of filtered observations, given 

the original observations of absolute food inflation deviation from the mean.  

Figure 7A. Intra-Distribution Dynamics of annualized unfiltered inflation rate transitions. 

Stacked density plot (left hand side panel) and HDR plot (right hand side panel). 

Figure 7B. Intra-Distribution Dynamics of annualized filtered inflation rate transitions. 

Stacked density plot (left hand side panel) and HDR plot (right hand side panel). 

 


