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Positive multi-criteria models in agriculture  

for energy and environmental policy analysis 
 

Abstract 

Environmental consciousness and accompanying actions have been paralleled by the 

evolution of multi-criteria methods which have provided tools to assist policy makers in 

discovering compromises in order to muddle through. This paper recalls the development 

of multi-criteria methods in agriculture, focusing on their contribution to produce input or 

output functions useful for environmental and/or energy policy. Response curves generated 

by MC models can more accurately predict farmers’ response to market and policy 

parameters compared with classic profit maximizing behavior. Concrete examples from 

recent literature illustrate the above statements and ideas for further research are provided. 

 

Keywords: multi-criteria models, interval programming, supply curves, bio-energy, policy 

analysis 

 

Introduction 

The increasing consciousness of constraints with regard to the environment within which 

human activities take place has coincided with the development multi-criteria decision 

making methods. Agricultural activities are by definition involved in the environment on 

both the input and the output sides. Natural resources used as inputs, such as soil and 

water, are no longer considered abundant and infinite reserves. On the output side, beside 

trade-able products that feed human population, there are “by-products” that harm the 

environment in a systematic way, stressing ecosystems in various degrees from irreversible 

damage to serious but manageable degradation, in both developed and developing 

countries. Universal issues to cope with the move from local to the global levels, starting 

with water shortages and nitrogen leaching in the seventies have been followed by 

greenhouse gas emissions as the major concern of the last two decades.  

 

Agriculture may be less important than other sectors in terms of its overall contribution to 

greenhouse gas emissions, but it has a crucial role to play within a strategy for addressing 

climate change. Opportunities for mitigating GHGs in agriculture fall into three broad 

categories according to Smith et al (2008): 
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i. Reducing emissions by more efficiently managing the flows of carbon and nitrogen 

in agricultural ecosystems. For example, practices that deliver added N more 

efficiently to crops and managing livestock to make most efficient use of feeds 

thus emitting less methane CH4)  

ii. Enhancing removals. Any practice that increases the photosynthetic input of C or 

slows the return of stored C via respiration or fire will increase stored C (carbon 

sequestration). 

iii. Avoiding (or displacing) emissions. Agriculture can produce energy from biomass 

that can displace fossil fuels, the major contributor to greenhouse gas emissions. 

Crops and residues from agricultural lands can be used as bio-energy feedstock 

still releasing CO2 upon combustion, but now the C is of recent atmospheric 

origin (via photosynthesis), rather than from fossil C. The net benefit of this bio-

energy feedstock to the atmosphere is equal to the fossil-derived emissions 

displaced less any emissions from their production, transport and processing.  

To determine the most efficient practices at the farm and the sector level in crop, livestock 

and energy production, multi-criteria decision-making (MCDM) has been extensively 

used. In a review of MCDM application in agriculture in 1993, Rehman and Romero stated 

that “the smooth functioning of an agricultural system involves having to balance 

biological, technical, economic, private, social, political and environmental criteria, and to 

resolve conflicts inherent therein”. Aforementioned pressures operating on agricultural 

systems, render the need for an MCDM approach for managing such systems even more 

imperative than before, and “such applications are now beginning to appear”.  

 

The intensive practices in agriculture have remarkable effects on society, the economy and 

the environment. In the early studies applying MCDM, social and environmental 

objectives are considered along with the economic objectives of the farm. As social and 

environmental goals in reality do not belong to the family of objectives of any individual 

farmer, these studies focus on pointing out feasible and satisfactory activity plans that 

constitute the so-called efficient frontier. A given solution is Pareto-efficient and, 

therefore, included in the efficient set, if another solution cannot improve upon it without 

degrading the performance of at least one objective in that efficient solution, thus the 

concept of an optimum is rendered meaningless so we search for those solutions which are 
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optimal in a Paretian sense instead. These solutions can be determined by Multi-Objective 

Programming (MOP) techniques with sequential optimization of several objectives, for 

instance, in the bi-criterion space applying the Non-Inferior-Set-Estimation (NISE) 

method.   NISE was proposed by Cohon et al. (1979), to analyse the conflict between water 

quality and income in a river basin planning problem. At the farm level, such methods are 

used to generate the extreme efficient points and bring about trade-offs to determine 

economic incentives for the farmer to consume inputs in a rational way in the case of 

nitrate leaching (i.e. Fernandes-Santos et al., 1993), water for irrigation (Louhichi et al., 

1999) and soil erosion (Young et al., 1991). 

 

The rationale for financial incentives to implement environmental measures such as soil 

and water conservation practices is that farmers would not adopt cropping plans (short 

term) or farming systems (long term) incorporating these practices to the extent desired by 

society without cost sharing subsidies. Premises underlying this rationale are that profit 

maximization is the sole criterion for decision making and farming systems incorporating 

soil and water conservation practices are less profitable than systems that exclude these 

practices. Validity of the profit maximization model has been questioned by comparing the 

selection of farming systems based on profit maximization and on multiple criteria 

decision-making (MCDM) models (criteria may comprise risk, management difficulty, 

own labour and working capital minimisation, and/or farm income maximization and 

others). It is proven that MCDM models better reflect the farmers’decisions with 

subsequent implications for conservation subsidies (Prato & Hajkowicz, 2001). A non-

interactive technique to derive farmers’ individual utility function, has been developed by 

Sumpsi, Amador, and Romero (1993, 1997) and extended by Amador, Sumpsi, and 

Romero (1998). The surrogate utility function estimated, subject to appropriate constraints, 

is extensively used to explicit response functions of inputs or outputs joined to crop 

production through parametric optimization. This way, nitrogen and water demand 

functions are estimated in various countries and circumstances in Europe (i.e.  Berbel and 

Rodriguez, 1998, Gomez-Limon and Berbel, 2000, Arriaza, Gomez-Limon, and Upton, 

2002, Manos et al., 2007). 

 

This methodological advance marked a turning point in the MC literature, transforming 

mathematical programming models in agriculture by definition of normative nature to 

positive models. The term ‘positive’ implies that, as in econometrics, the parameters of the 
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objective function are derived from an economic behavior assumed to be rational given all 

the observed conditions that generate the initial activity levels. The main difference with 

econometrics is that the objective function is vaguely defined, not necessarily obeying to a 

strict theoretical form. Furthermore, MP models do not require a series of observations to 

reveal the economic behaviour, which as a drawback deprives them of inference and 

validation tests. Multi-criteria methods manage to transform the objective function so that 

optimal solutions include not only crop plans on the vertices of the feasible polyhedron but 

also points on hyper-plans, enabling the model to approach observed levels of activities 

outperforming its LP counterparts. For this reason farm level models that incorporate 

multiple goals can be more effective, assisting policy makers in developing more efficient 

and targeted policy measures, thereby adjusting the existing policy regime. 

 

Multi-criteria surrogate utility functions include at least one risk criterion, thus 

requiring detailed information at the farm level. As a matter of fact, a comparative study of 

various methods proved (Arriaza & Gómez-Limón 2003) that the risk criterion ranks 

second after the gross margin maximisation, one weighted at around 30% and both often 

amounting over 90%. Usually non-linear risk-related terms are introduced in the objective 

function seeking efficient diversification among activities as a means of hedging against 

risk.  To implement such models, availability of covariance matrices – which require gross 

margin time-series of all candidate crops - is fundamental (Hardaker et al., 2004). 

Consequently, it is fairly difficult to apply these methods to sector or regional models 

containing numerous farms, thus relevant publications even though theoretically appealing 

are applied to a limited number of representative farms (Petsakos et al., 2008) or to limited 

activities or products (Katranidis & Kotakou, 2008). However, the uncertainty element can 

be taken into account expressing objective function coefficients (gross margins per surface 

unit) in intervals rather than in crisp values. To specify intervals the sole requirement is a 

reliable idea of the range of variation of gross margins.  

  Interval linear programming (ILP) models are equivalent to a specific class of multi-

objective (MO) models with objectives generated by the extreme interval values. 

Consequently, there is a need to select an appropriate criterion to resolve the problem in 

order to obtain a compromise solution. A conservative criterion well suited to the risk 

averse attitude of farmers, namely the min-max regret criterion, has been proposed in the 

literature, along with efficient algorithms. Optimal plans from these algorithms are rather 
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located on feasible polyhedron hyper-plans than on vertices, thus resulting in cropping 

plans closer to the observed than those resulting from the optimal solution of similar LP 

models. For this reason, as it is the case with non-interactive MC models, it is interesting 

from a policy maker’s point of view to use such a model to explicit hidden response 

functions. In fact, supply response functions regarding biomass for energy production have 

been generated from an ILP specification of French arable agriculture (Kazakci et al., 

2007). Supply curves generated by ILP are presumably better estimates of true supply 

curves improving results of traditional LP models. As in the case of nitrogen and water 

inputs, it is valuable not only for policy makers but also for investors to approximate the 

cost of biomass raw materials, and it may assist in the development of bio-energy chains 

aiming at attenuating the greenhouse effect.   

 

The aim of this paper is to present response curves generated through parametric 

optimization from non-interactive MC as well as from ILP models. Specific cases in 

agriculture are described where these functions are compared with their counterparts 

generated by respective LP models. Differences and consequences for environmental and 

energy policy are analyzed, pointing out the contribution of MC logic to cope with major 

contemporary issues. The paper is organized as follows: A concise presentation of the 

mathematical structure of the MC model is given in the next section. Formal aspects of the 

"Interval Linear Programming (ILP)" approach and the min-max regret algorithm are 

presented in section 3. Section 4 details parametric optimization and the generation of 

response functions. Selected examples of estimated response functions are the focus points 

of section 5. Concluding remarks and ideas for further research complete the article. 
 

Non-interactive multi-criteria methodology 

Multi-criteria approaches, mainly goal programming and multi-objective programming, are 

most common in agricultural studies (Piech & Rehman 1993). In most of these early multi-

criteria approaches, the goals incorporated in the model and the weights attached to them 

are elicited through an interactive process with the farmer (Dyer, 1972). This interaction 

with the farmer and the self-reporting of goals has limitations, since farmers often find it 

difficult to define their goals and articulate them, feel uncomfortable when asked about 
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their goals, or are often influenced by the presence of the researcher and adjust their 

answers to what they feel the researcher wants to hear.  

A well-known, non-interactive methodology to derive the utility function of each farmer 

has been devised by Sumpsi et al. (1996) to overcome inconveniences and complications 

resulting from interaction. The basic characteristic of this methodology is that the farmer’s 

actual and observed behaviour is used for the determination of the objectives and their 

relative importance. Assume that: 

x     = vector of decision variables 
F    = feasible set 

)(xfi = mathematical expression of the ith objective 

iw    = weight measuring relative importance attached to the ith objective 
if ∗  = ideal or anchor value achieved by the ith objective 

if∗   = anti-ideal or nadir value achieved by the ith objective 
if    = observed value achieved by the ith objective  
ijf   = value achieved by the i-th objective when the jth objective is optimized  
in    = negative deviation (underachievement of the ith objective) 
ip    = positive deviation (overachievement of the ith objective) 

 

The first step involves the definition of an initial set of objectives )(1 xf ,…, )(xif ,…, )(xqf . 

The researcher can define this initial set of objectives according to previous research and 

related literature or through preliminary interviews with the farmers. In the second step, 

each objective is optimized separately over the feasible set. At each of the optimal 

solutions the value of each objective is calculated and the pay-off matrix is determined 

(Sumpsi et al. 1996). Thus, the first entry of the pay-off matrix is obtained by: 

),(1 xMaxf subject to Fx∈                                               (1) 

since 111
ff =∗ . The other entries of the first column of the matrix are obtained by 

substituting the optimum vector of the decision variables in the remaining q-1 objectives. 

In general, the entry ijf  is acquired by maximizing the )(xf j  subject to Fx∈ and 

substituting the corresponding optimum vector x* in the objective function )(xfi .  

The elements of the pay-off matrix and the observed (actual) values for each objective are 

then used to build the following system of q equations. This system of equations is used to 

determine the weights attached to each objective: 
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The non-negative solution generated by this system of equations represents the set of 

weights to be attached to the objectives so that the actual behaviour of the farmer can be 

reproduced ( 1f , 2f ,…, qf ). Usually the above system of equations has no non-negative 

solution and thus the best solution has to be alternatively approximated.  

To minimize the corresponding deviations from the observed values, the entire series of L 

metrics can be used. The 1L  criterion that minimizes of the sum of positive and negative 

deviational variables assumes a separable and additive form for the utility function. 

Alternatively, the ∞L criterion according to which the maximum deviation D is minimized 

can be used. Both criteria are commonly used in agricultural studies, partly because they 

can be managed through an LP specification. The ∞L  criterion corresponds to a 

Tchebycheff utility function that implies a complementary relationship among objectives 

(Amador et al. 1998).  

To solve the minimization problem using 1L  criterion in order to determine criteria weights 

(minimization of the sum of positive and negative deviational variables) a goal 

programming model is specified as shown below: 

∑
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∑
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Weights determined by (3) can be used to the multi-criteria utility function. The generic 

form of the utility function is shown below:  

[ ] )()(max
1

* xf
k
wxff

k
w

u i

q

i i

i
ii

i

i ∑
=

−
⎭
⎬
⎫

⎩
⎨
⎧

−= λ                                           (4) 

ik  is a normalizing factor (for example: ∗
∗ −= iii ffk ). 
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After estimating the farmer’ individual utility function, we maximize it subject to the 

constraint set and the results compared to the actual values of the q goals. This way the 

ability of the utility function to accurately reproduce farmers’ behaviour is checked and the 

model is validated. Namely, the following mathematical programming problem is solved: 

)(
1

xf
k
wMinD i

q

i i

i∑
=

−λ  subject to: 

[ ] Dff
k
w

xii
i

i
≤−∗

)(        qi ...,2,1=                                              (5) 

with x∈F 

The utility function structure of model (5) can be modified by varying values of parameter 

lamda (λ). When λ equals to zero the model turns to a min-max optimization whereas for 

higher values the additive form of the utility prevails. Intermediate values of λ correspond 

to the augmented Tchebycheff function. The preference structure which provides the 

solution closest to the actual situation will be considered the utility function consistent with 

the preferences revealed by the farmer. In other words model (5) with the “correct” λ 

parameter can be used later to perform parametric optimization for generating response 

curves. 

Uncertainty and  Interval Programming 

In mathematical programming models, the coefficient values are often considered 

known and fixed in a deterministic way. However, in practical situations, these values are 

frequently unknown or difficult to establish precisely. These days it seems necessary to 

relax the certainty assumption in farm based models incorporating risk considerations of 

the decision makers, in this case farmers, for two important reasons. Firstly, under the last 

CAP reform, price and yield variations directly influence gross margins, as no crop 

specific subsidies exist anymore. Secondly, and more importantly, the sky-rocketed cereal 

prices of 2007 followed by their collapse in 2008 boosted price volatility. This situation 

obliges modellers to pay special attention to uncertainty of prices, which combined with 

the vagaries of nature and the new institutional environment, make farmers very cautious. 

Interval Programming (IP) has been proposed as a means of introducing uncertainty 

avoiding data greedy variance-covariance matrices, by proceeding only with simple 

information on the variation range of the objective function coefficients represented by 
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intervals. We now introduce some definitions and notations and briefly present the formal 

problem.  

Interval Linear Programming Problem 

Let us consider a Linear Programming (LP) model with n (real and positive) variables 

and m constraints:  max {cx : c ∈ Γ, x ∈ S}   (ILP) 

where  [ ]{ }niulcc iii
n ..1,,: =∀∈ℜ∈=Γ  

{ }mnmn bAxbAxxS ℜ∈ℜ∈≥≤ℜ∈= × ,,0,:  

Let { }{ }Γ∈∈=∈=Π cSycyxSx ,:maxarg:  be the set of potentially optimal solutions 

and Υ be the set of all the extreme objective functions: { }{ }niulcc iii ..1,,:Y =∀∈Γ∈= . 

In the literature, two distinct attitudes can be observed. The first attitude consists of finding 

all potentially optimal solutions that the model can return in order to examine the possible 

evolutions of the system that the model is representing. The methods proposed by Steuer 

(1981) follow this kind of logic. The second attitude consists of adopting a specific 

criterion (such as the Hurwicz's criterion, the maxmin gain of Falk, the minmax regret of 

Savage, etc.) to select a solution among the potentially optimal solutions. Ishibuchi and 

Tanaka, Inuiguchi and Sakawa and also Mausser and Laguna (1998) proposed different 

methods with this second perspective. Following this perspective, the next section 

introduces the selected approach, namely the minimization of the maximum regret 

approach, and the procedure adopted for its implementation. 

Minimizing the Maximum Regret 

Minimizing the maximum regret consists of finding a solution which will give the 

decision maker a satisfaction level as close as possible to the optimal situation (which can 

only be known as a posteriori), whatever situation occurs in the future. The farmers are 

faced with a highly unstable economic situation and know that their decisions will result in 

uncertain gains. It seems reasonable to suppose that they will decide on their surface 

allocations prudently in order to go through this time of economic instability with 

minimum loss, while trying to obtain a satisfying profit level. The min-max regret solution 

procedure is implemented here as proposed in the literature (Inuiguchi and Sakawa, 

Mausser and Laguna, 1998, 1999). The mathematical translation of this hypothesis that is, 
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the presentation of the formal problem and the algorithm of min-max regret are presented 

in the following paragraphs.  

Suppose that a solution x∈S is selected for a given c∈Γ.  The regret is then: 

( ) { } cxcyxcR Sy −= ∈max,  and the maximum regret is:  ( ){ }xcRc ,max Γ∈  

The minmax regret solution x̂  is then such that ( ) ( )xRxR maxmax ˆ ≤ for all x∈S. The 

corresponding problem to be solved is:  { }{ }{ }cxcySycSx −∈Γ∈∈ maxmaxmin  (MMR) 

The main difficulty in solving MMR lies into the infinity of objective functions to be 

considered. Shimizu and Aiyoshi proposed a relaxation procedure to handle this problem. 

Instead of considering all possible objective functions, they consider only a limited number 

among them and solve a relaxed problem (hereafter called MMR’) to obtain a candidate 

regret solution. The relaxed MMR’ problem is: 

{ }{ }{ }cxcySyCcSx −∈∈∈ maxmaxmin     (MMR’) 

where { } Γ⊂= pcccC ,...,, 21 .           

This problem is equivalent to:   min r    (MMR’) 

s.t. kc
kk xcxcr ≥+ ,   k = 1,… , p 

r≥0,  x∈S,  ck∈C 

where kc
x  is the optimal solution of ( )yck

Sy∈max . A constraint of type kc
kk xcxcr ≥+ is 

called a regret cut. Let us denote x  the optimal solution of MMR’ and r  the 

corresponding regret. Since all possible objective functions are not considered in MMR’ we 

cannot be sure that there is no c belonging to Γ \ C which can cause a greater regret by its 

realization in the future. Hence, we use the following CMR problem to test the global 

optimality of x : { }{ }xccySyc −∈Γ∈ maxmax     (CMR) 

Observe that the objective function value of CMR represents the maximum regret for x  

over Γ, denoted by ( )xRmax . If the optimal solution Γ∈∈ +
+

1,1
p

c
cSx p  of CMR gives 

( ) rxR >max , it means that 1+pc  can cause a greater regret than r  by its realization in the 

future and that it has to be considered also in C while solving MMR’. So, the regret cut 
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1
11

+
++ ≥+ pc

pp xcxcr  is added to the previous constraint set of the MMR’ to solve it again 

and obtain a new candidate. The process is iterated until the generated candidate regret 

solution is found to be optimal by CMR. The difficulty in this resolution process lies in the 

quadratic nature of the CMR problem. Mausser and Laguna (1998) used their results to 

formulate a mixed integer linear program equivalent to CMR which is less costly to solve. 

Thus, in this exercise the equivalent problem mixed-integer formulation is used. This 

solution procedure idea is summarized by the following algorithm: 

The MinMax Regret Algorithm 

Step 0: ,0,0 ←←° kr  choose an initial candidate x . For the initial regret candidates to 

start the algorithm, the LP optimal solutions may be used. 

Step 1:  ,1+← kk Solve CMR to find kc  and ( )xRmax  : 

 If ( ) °= rxRmax then END.  x  minimizes the maximum regret. 

Step 2:  Add the regret cut kc
kk xcxcr ≥+  to the constraint set of MMR' 

Step 3:  Solve (MMR') to obtain a new candidate x  and r .  rr ←° . Go to Step 1. 

The difficulty in this resolution process lies in the quadratic nature of the CMR problem. 

Inuiguchi and Sakawa investigated the properties of the minmax regret solution to find a 

more suitable way to solve CRM. Mausser and Laguna (1998) used their results to 

formulate a mixed integer linear program equivalent to CMR which is less complex to 

solve. As Mausser and Laguna (1999) noticed that the complexity of that mixed integer 

program severely limits the size of problems to be addressed, therefore they suggested to 

use heuristics. In the problem studied here, uncertain objective function coefficients are in 

no farm decision making unit more than five. Thus, in our experiments we used this 

equivalent problem mixed-integer formulation. 

Consider the following ILP model to illustrate how the algorithm works and its underlying 

logic.  

max  total gross margin  c1x1+c2x2 subject to 

x1        + x2           ≤ 60  land availability 

70 x1 + 25 x2    ≤ 2000  own labour availability 

12 x1 + 2.5 x2   ≤  300  working capital 
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and  x1 , x2 ≥  0  

 where  c1∈[7.2, 10.4] and c2∈[3, 5.5].  
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(12.85,  44.01)

 
Figure 1. Variable space, feasible area and regret cuts. 

This problem has a feasible region delimited by the five vertices (Fig. 1). The set of all the 

extreme objective functions is Y={(7.2, 3) ;(7.2, 5.5) ;(10.4, 3) ;(10.4, 5.5)}. The 

corresponding MOLP problem, by denoting S the feasible region defined by the 

constraints, is  

υ−max{ 7.2 x1+ 3 x2, 7.2  x1+ 5.5 x2, 10.4 x1+ 3 x2, 10.4 x1+5.5 x2 : (x1,x2) ∈ S }  

When considered, separately, each of these objective functions corresponds to a different 

optimal solution (respectively to Y, (11.1, 48.9) ; (11.1, 48.9); (20, 24) ; (11.1, 48.9)).  

Along with the vertices (25, 0) ; (60, 0), those solutions constitute basic efficient solutions 

for the MOLP. The set Π of potentially optimal solutions for the ILP (the efficient 

solutions for the MOLP) is given by convex linear combinations of every adjacent couple 

of these four solutions.  

Let us apply the algorithm to this problem and discuss the results.  

Initialisation  Step 0 : r° ←0, 0=k ,  Let us choose (11.1, 48.9) as the initial 

candidate x . 

Iteration 1   Step 1 : 1←k , Solving CMR leads to ( )xRmax  = 17.78 and 1c  is (10.4, 3), 

( ) °≥ rxRmax  . 

Step 2 : The regret cut 10.4 x1+ 3 x2 + r ≥ (10.4*20+3*24) = 280 is then 

added to the constraint set of the MMR’. In this way, the program will return 

a new candidate which will try to minimize the potential regret (280 – 10.4 x1 
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- 3 x2) that might occur if (20, 24) is not selected as a solution. Notice that 

this is logical considering since we have selected (11.1, 48.9) as the initial 

candidate solution. The algorithm detects that the objective function for 

which the other end of the efficient frontier, the point (20, 24), is optimal, 

may cause an important regret if this turns out to be the real objective 

function in the future.  

Step 3 : (MMR’) returns another candidate x = (20, 24) and r = 0. rr ←° . 

Obviously, this solution minimizes the potential regret (280 – 10.4 x1 - 3 x2) ! 

It will be tested next. 

Iteration 2  Step 1 : 2←k , Solving CMR leads to ( )xRmax  = 72.89 and c2 is (7.2, 5.5), 

( ) °≥ rxRmax . 

Step 2: Following the results of step 1, 7.2 x1+ 5.5 x2 + r ≥ 

(7.2*11.1+5.5*48.9) =348.9 is added as the new regret cut to constraint 

system of the MMR’. As before, the aim is to take into consideration the last 

regret possibility that CMR has returned. Now, MMR’ will try to return a 

new candidate by considering both potential greatest regrets (280 – 10.4 x1 - 3 

x2) and (348.9 – 7.2 x1 – 5.5 x2). 

Step 3: Under these constraints, MMR’ returns x = (12.85, 44.01) and 

r =14.29. r°← r .  This time the regret is positive and the corresponding 

solution is not a vertex (see in figure 1).   

Itération 3  Step 1 : 3←k , Testing the candidate by CMR leads to Rmax(x*) = 14.29 = 

r° . END. 

Thus, x *= (12.85, 44.01) minimizes the maximum possible regret by r  = 14.29. 

Graphically this regret equals to the minimum distance between the intersection of regret 

cut lines (figure 1) juxtaposed by the CMR auxiliary models in the variable space until 

finding the minimum regret and the feasible frontier. Then the task undertaken by the 

MMR model basically corresponds to the projection of the regret-cuts-intersection-point to 

the feasible area. The ILP solution corresponds to the projection of the intersection point to 

the frontier direction towards point (0,0) in the variable space. It can also be noted that the 

min-max regret solution is a well balanced solution, an efficient solution of the MOLP, 
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which has been obtained by taking into account extreme cases that might prove “fatal” for 

a decision maker. The regret optimal solution most likely lies on a side of the feasible area 

as in figure 1. 

 

Parametric optimization to estimate response functions 

The typical farm model structure is based upon statements about the short-run physical 

restrictions to production (resource availability limits), decision rules (profit max, risk 

aversion etc) and the economic environment within which the farmer operates (imports or 

quotas, tariffs on certain levels, competitive or monopolistic price formation or guaranteed 

prices, etc). In mathematical programming models response functions for output or input 

variables are implicit (Kutcher and Norton, 1979). They can be numerically determined by 

means of conducting several solutions of the model under variations of market or policy 

parameters. Response elasticity and associated changes in activity levels, income, 

employment or environmental pollution may be calculated ex post. 

As previously mentioned response functions may concern input demand and/or output 

supply curves. As far as we know MC response curves have been compared with the 

traditional LP ones only with regard to output supply. Two case-studies are presented 

below where response curves of MC models have been measured against the ones 

generated by LP counterparts, the first concerning non-interactive MC and milk supply 

(Rozakis et al., 2009) and the second estimating biomass-to-energy supply through Interval 

Programming minimising max regret (Kazakci et al., 2007). These cases have 

demonstrated that alternatives to the LP models achieved a higher predictive capacity thus 

response curves derived better approximate producer  behaviour and are fairly suitable for 

policy analysis.  

Milk supply response functions derived by MC utility function vs. max profit 

Sector or regional response curves generated through parametric optimization are in fact 

aggregates of individual response curves from decision making units obeying various 

rationales. In the case of non-interactive MC, values of weights in the surrogate utility 

function indicate the importance of criteria, thus some individual farms may be driven 

exclusively by one objective (for instance maximizing profit when its weight value is 

100%), others by two objectives (for instance when weight values attributed to gross 
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margin and risk sum up to 100%) and so on. As Herbert Simon noticed (1979) “..empirical 

data do confirm that supply curves generally have positive slopes... but positively sloped 

supply curves could result from a wide range of behaviours satisfying the assumptions of 

bounded rationality rather than those of utility maximisation”. 

In the area of Etoloakarnania, Western Greece, the aggregate milk supply is estimated by 

the weighted addition of the individual supply functions. The alternative supply function 

indicates a lower milk supply at all price levels compared with the LP based curve (fig.2). 

Using the traditional model to estimate the regional supply would lead to a serious and 

unrealistic overestimation. Furthermore, the alternative supply function is less elastic than 

the traditional one in the prevailing price range (0,8-1€/kgr), but more elastic in low price 

levels. This means that the inclusion of multiple goals in our model smooths the reaction of 

farmers to price changes, since their behavior is also influenced by other motives.  
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Figure 2. Aggregate milk supply (Source: Rozakis et al., 2009) 

To conclude on the suitability of the estimated supply function, the authors compared the 

estimated supply with the actual observed value of milk supply of the Etoloakarnania 

prefecture. In 2004 the milk supply of the area was 48575 tonnes, while the price of milk 

was about €0.80 to €0.85 per kgr. The estimated supply function indicates that the supply 

should be 36% higher. This overestimation is mainly due to the high milk yield of the 

small farm used in the analysis (120 kgr/ewe) compared to the average milk yield (about 

20% higher). If the milk yield was closer to the average then the estimation would be more 

accurate. On the other hand the supply function estimated using the traditional model 

yields a supply 75% higher than the actual one which is quite unrealistic.  

 

Biomass supply response function derived by min-max regret ILP vs. max profit 
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Past experience in Europe shows that the biomass raw material cost, defined at the farm 

level, forms a significant part of the bio-energy cost. Due to an important spatial dispersion 

of biomass in many productive units (farms) and competition between agricultural 

activities for the use of production factors (land in particular), strongly dependent on the 

CAP, the cost estimates of these raw materials raise specific problems. Although it is 

important that this cost be estimated correctly, three principal difficulties are faced (Sourie, 

2002): (a) the scattering of the resource, (b) the competition existing between agricultural 

activities and non-food crops at the farm level, and finally (c) the dependence of raw 

material costs on agricultural policy measures. 

A bottom-up approach is adopted to reflect the diversity of arable agriculture articulating 

numerous of farm sub-models in a block angular form, that have neither the same 

productivity nor the same economic efficiency so that the production costs are variable. 

Thus, ex-post aggregation helps to relax the proportionality hypothesis of LP (Leontief 

technology) and to avoid problems such as discontinuous response and overspecialization 

arising in single representative farm models. Similar methodology has been elaborated by 

Sourie (2002) for the estimation of the supply of energy biomass in the French arable 

sector. It is postulated that in the short term the farmers choose between food crops Xc and 

non-food crops Xd so each producer f maximizes gross margin (g). Variables X take their 

values in a limited feasible area defined by a system of institutional, technical and 

agronomic constraints. When the market price or subsidies linked to price are zero, no 

surfaces are cultivated by energy crops. From a certain threshold of price value a minimal 

quantity q of a crop Xd will be produced that is equivalent to the opportunity cost or 

shadow price by setting down the constraint yd xd >q, where yd represents the yield of the 

energy crop d. The opportunity cost will vary according to the produced quantities q, 

within each farm but also across farms when the constraint applies to all farms ( dQ  non-

negative quantities of non-food resources). Thus competition with other non-food as well 

as food crops is taken into account. The relation ( )ddd qJp =*
 is a (inverse) supply curve 

of the resource d. This approach also leads to an estimate of the agricultural producers’ 

surplus, which is an item of the cost-benefit balance in the bio energy industry (Sourie and 

Rozakis, 2001).   

In the case of Interval Programming the validity of the arable sector model can be checked 

by comparing optimal activity level outcomes of the LP model with the actual ones in the 
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base year. Then interval linear programming approach using the min-max regret criterion 

is implemented to investigate if the model’s validity can be improved. To evaluate the 

proximity of the optimal solution opt
kx  to the observed activity level obs

kx  for the crop k, 

several indicators are suggested in the literature such as the sum of absolute distances of 

individual crops in the plan, the mean absolute distance, the Theil index, the “similarity” 

Finger-Kreinin index and others. Thus some farmers maximize gross margin while others 

demonstrate regret-averse attitude. Revealed preferences by the farm by farm scrutiny lead 

us to attempt to model arable agriculture assuming different preferences among producers. 

For each individual farm elementary model a simple rule replaces the objective function 

with that, between gross margin maximization and min-max regret, performing better in 

terms of proximity of the resulted crop mix to the observed one. Farm sub-models whose 

observed behavior is explained better when uncertainty is taken into account in the form of 

ILP then minimizing maximum regret we adopt hereafter the ILP specification. When the 

gross margin maximization rule reproduces satisfactorily reality, it is retained as a decision 

rule and the corresponding farm models remain LP specified. Thus, a hybrid block angular 

arable sector model is formed with presumably improved predictive ability than the initial 

LP. This model built by Kazakci et al. (2007) comprises about two hundred cereal oriented 

farms in a French region, the regional supply curves are determined by aggregating the two 

hundred individual ones. 

wheat-to-ethanol supply at the regional level
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Figure 3. Supply curves  generated by max profit vs. min-max regret objectives 

 

Different factors affect the relative position of the hybrid min-max regret against classical 

LP generated supply curves. Not only because the objective function value in terms of total 

farm gross margin at the min-max regret optimum is lower than the LP optimal value 

(which results in lower opportunity cost), but also because the energy crop giving 
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relatively stable gross margin is appreciated in the farm compared with other crops with 

high variability (higher opportunity cost). Depending on the above factors, as well as the 

interaction with the constraint structure, the min-max supply curves are located to the right 

of the LP curve up to a certain quantity level. Quantities used in the biofuel industry float 

in this range, thus we consider that the min-max criterion adoption results in lower 

opportunity costs of biomass raw material for the biofuel industry. The difference between 

biofuel estimated cost (agricultural biomass cost plus transport and conversion-to-biofuel 

expenses) and its market value indicates the minimal subsidy (equivalent to the excise tax 

exemption) necessary to make biofuels financially viable. Biofuel costs calculated using 

min-max regret objective functions are 5% lower than respective LP estimated costs 

broadening the room for tax credit adjustment.  

 

Concluding remarks 

Mathematical programming constitutes a valuable tool for policy making in agriculture 

especially in the current period of abrupt institutional changes. Agriculture is closely 

linked to the environment, a cornerstone element in the recent European policy 

developments. After the achievement of food security that constituted the initial goal of the 

European Common Agricultural Policy consecutive adjustments tend to compensate the 

social and environmental positive externalities provided by farmers (subsidies efficiently 

targeted at public goods that promote agriculture’s services to society), gradually 

eliminating any other form of support. Multi-criteria models have been traditionally used 

to search compromise plans for farmers to simultaneously satisfy private interests and 

environmental and social priorities. In this paper the positive function of multi-criteria 

models is highlighted, demonstrating the superiority of alternative MC models to profit 

maximisation ones with regard to their predictive capacity. Two categories of Mc models 

have been presented, namely multi-criteria utility objective function formulated in a non-

interactive manner, and secondly models consisting of objective function containing 

interval coefficients. A thorough presentation of the second category brings about the 

multi-criteria nature of the ILP when adopting a min-max criterion, in this case minimising 

the maximum regret caused by embedded uncertainty. 

 

Parametric optimisation assists in rendering explicit, response functions from the above 

MC modelling structures and the analysis focuses on output supply curves. A comparison 

of MC derived curves to those generated by classic LPs is done using two case-studies 



 

20 
 

drilled from the recent literature. Advantages for environmental and energy policy analysis 

are pointed out, especially in the case of biomass raw material for bio-energy production. 

A good approximation of biomass cost conveys a clear idea of quantities offered by the 

farmer at given price levels. This information is valuable for predicting the reaction to 

price changes in different groups of farms, helping policy makers to design more affective 

and targeted measures. Similarly, the agro-industry is assisted in better estimating its input 

cost and subsequent profitability, and when supply curves are aggregated for different farm 

types to design price-discriminating policies.  

 

Further study is required to reveal structural similarities of multi-criteria models with other 

modelling structures that take risk into account. Additionally we intend to generate 

response functions based on the same large sample using the aforementioned methods in 

order to detect differences and finally estimate reliable demand and/or supply curves. In 

particular, concerning water for irrigation as EU member states are obliged to implement 

the Water framework, there is urgent need to study the effect of pricing water at a 

volumetric basis instead of the current flat rate area fee. In Greece, where there are only a 

handful of basin authorities that already use the volumetric scheme, it is very important to 

estimate willingness to pay for irrigation water in order to determine price values.       
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