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Can Nutritional Label Use Influence Body Weight Outcomes? 
 

Andreas C. Drichoutis, Rodolfo M. Nayga Jr. and Panagiotis Lazaridis 

 
 

Abstract 

Nutritional labeling has been of much interest to policy makers and health 

advocates due to rising obesity trends.  So can nutritional label use really help reduce 

body weight outcomes?  This study evaluates the impact of nutritional label use on 

body weight using the propensity score matching technique. We conducted a series of 

tests related to variable choice of the propensity score specification, quality of matching 

indicators, robustness checks, and sensitivity to unobserved heterogeneity using 

Rosenbaum bounds to validate our propensity score exercise. Our results generally 

suggest that nutritional label use does not affect body mass index.  Implications of our 

findings are discussed. 

Keywords: Nutritional Labels, Body Mass Index, Propensity Score Matching, 

sensitivity analysis 

JEL codes: I1, C14 

 

I. INTRODUCTION 

In light of the dramatic rise in obesity rates [particularly in developed countries 

(Loureiro and Nayga, 2005)], having healthy diets and healthier food choices are 

becoming the target of many public programs and policies.  In the US, the Nutritional 

Labeling and Educational Act (NLEA) requires disclosure of the nutritional content of 

foods on a standardized label and strictly regulates the presence of health and nutrient 

content claims. The regulation also required a new format for the nutrition information 

panel and standardized serving sizes. Prior to the implementation of the NLEA, food 

manufacturers provided nutritional information only on a voluntary basis. More 

recently, due to the obesity issue, the provision of nutritional information in the food 

away from home (FAFH) market has also received a lot of attention in the US. 

Nutritional labelling regulations are also being addressed in a number of 

countries around the world.  For instance, the EU Commission consulted with member 

states and stakeholders in 2003 about the preparation of a proposal amending the 

voluntary provision of nutritional information to become mandatory. In November 
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2004, the Commission then published an impact assessment on the introduction of 

mandatory nutritional labelling for pre-packaged food products across the EU 

(European Advisory Services, 2004). As part of the consultation process, a paper 

discussing the revision of technical issues was also published in May 2006, paving the 

way for the final adoption of new mandatory rules. 

Nutritional labeling regulations, both in the US and elsewhere, are aimed at 

helping people make more informed and healthier food choices. The literature for the 

US suggests that nutritional label use provides some dietary benefits. Specifically, 

increased use of nutritional labels has been associated with healthier patterns of dietary 

behaviour as well as food choice motivations (Coulson, 2000). Other studies associated 

label use with diets high in vitamin C and low in cholesterol (Guthrie et al., 1995) and 

with a lower percentage of calories from fat (Lin and Lee, 2003). In addition, disclosure 

of cereal brands‟ sugar content (“negative” information) caused consumers to switch to 

low-sugar cereals (Russo et al., 1986).  Teisl et al. (2001) also found that food labelling 

can significantly affect consumer behavior. Although they did not find that providing 

health-related information always led consumers to switch consumption to „healthy‟ 

products, others (Kim et al., 2001) have found that consumers‟ label use increased the 

average Healthy Eating Index (HEI)
1
 by a range of between 3.5 and 6.1 points, with 

higher improvements in diet quality detected when health claim information was used. 

In addition, Variyam (2004) found that consumers who used the nutrition facts panel 

increased fiber, iron, and protein intakes, compared to consumers who did not use the 

nutrition facts panel.  Neuhouser et al. (1999) found that label use was significantly 

associated with lower fat intake while Kim et al. (2000) found that label users generally 

had healthier diets than non-users, i.e., lower percentage of calories from fat and 

saturated fat, lower cholesterol and sodium intake, and higher fiber intake. Variyam 

(2008) also found that fiber and iron intakes of label users are higher than those of label 

nonusers. 

As discussed above, a number of studies have evaluated the effect of nutritional 

label use on dietary outcomes. There is scant literature, however, on the effect of 

nutritional label use on body weight outcomes. Moreover, with a few exceptions [i.e., 

                                                
1 The HEI is a measure of diet quality that assesses conformance to US federal dietary guidance. It was 

revised in 2006 to conform to the 2005 dietary guidelines for Americans and is now comprised of 12 

components. HEI takes values from 0 to 100 where higher scores indicate a closer adherence to 

recommended ranges or amounts. 
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Kim et al. (2001) and Variyam (2008)], the important issue of self-selection problem 

inherent in the label use decision has been ignored in the literature. Label users and 

non-label users usually differ in observed socioeconomic and demographic 

characteristics. The bias caused when simply comparing the two groups and attributing 

the observed differences in health outcomes to label use alone is called self-selection 

because it ignores how individuals self-select into label use. Kim et al. (2001) 

addressed this problem by employing an endogenous switching regression model.  

Specifically, they compared the diet quality of label users and the expected diet quality 

of label users in the absence of labels. Variyam (2008)  addressed self-selection by 

exploiting the fact that while nutrition information are mandatory for most foods sold in 

stores, food-away-from-home foods are exempt from the NLEA regulations. Therefore, 

label users - the treatment group - are exposed to the label in one setting but not in the 

other and label nonusers in the same settings act as the control group. Variyam then 

used a difference-in-differences estimator in this quasi-experiment. 

A limitation in both studies, however, is the measure of label use they utilized 

in their analysis.  In both studies, the ordinal measure of label use was collapsed into a 

binary indicator, thus setting ad hoc cut off points in the label use measurement. In this 

study, we relax this restriction by using an ordinal instead of a binary measure of label 

use.  In addition, we explore the use of propensity score matching to address the 

possible occurrence of selection bias and reverse causality and to estimate treatment 

effects when treatment is endogenous to the outcome. Matching methods represent, 

depending on the particular method employed, either a semi-parametric or non-

parametric alternative to linear regression (Black and Smith, 2004). The propensity 

score was introduced by Rosenbaum and Rubin (1983) to provide an alternative 

method for estimating treatment effects when treatment assignment is not random, but 

can be assumed to be unconfounded conditional on observables X. Since we argue that 

we observe the major variables influencing selection as well as outcomes, we assume 

that weight outcomes and selection into label use are independent conditional on these 

observables (Conditional Independence Assumption – CIA).  We further examine and 

discuss the appropriateness of the CIA assumption later on in the paper. 

Matching methods focus attention on a specific causal effect of interest and 

treat all variables other than the treatment variable as potentially confounding variables. 
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The influence of confounding variables is reduced by non-parametrically balancing the 

vector of characteristics across treatment, solely to obtain the best possible estimate of 

the causal effect of the treatment on the outcome variable. The idea is that people with 

the same propensity score that are on different experimental conditions (i.e. reading or 

not reading nutritional labels) can be compared after balancing the distributions of their 

covariates. Simply put, matching mimics a randomized experiment i.e. conditional on a 

set of observables there is some unspecified mechanism that randomizes people into 

treatment. 

Since much of the debate on provision of nutrition information is founded on the 

obesity epidemic and since there are also some cries for policy interventions similar to 

the NLEA in the Food-Away-From-Home market, we examine the effect of label use 

on a weight outcome i.e. the Body Mass Index (BMI). In our propensity score matching 

exercise, we conduct a series of tests to validate our strategy. The tests relate to variable 

choice of the propensity score specification, quality of matching indicators and 

sensitivity analysis using “Rosenbaum bounds”. We also conducted robustness checks 

by estimating propensity scores for a “thick support” area (Black and Smith, 2004). 

 

II. PROPENSITY SCORE MATCHING 

Propensity score matching has become very popular in the estimation of causal 

treatment effects and has been applied to a wide variety of situations when there is a 

group of treated people and a group of untreated people. In this study, we depart from 

the binary treatment case since reading nutrition labels can occur at different 

frequencies which can be considered as different levels of treatment. Our aim is to 

assess the effect of each level of label use or treatment on BMI. However, we cannot 

observe all outcomes at the same time for the same individual and auxiliary methods 

are required. Taking just the difference of the mean outcomes between two levels of 

treatment would lead to selection bias since it is most likely that components which 

determine the treatment decision also determine the outcome variable of interest, and 

thus the outcomes of individuals from treatment and comparison group would differ 

even in the absence of treatment (Caliendo and Kopeinig, 2008). In what follows, we 

discuss propensity score matching for the binary treatment case and discuss later how 

we applied this to the multiple treatment case. 
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The idea behind the matching technique is to find a group of non-treated 

individuals that are similar to the treated individuals in all pre-treated characteristics X. 

That is, we construct an artificial comparison group and compare their health outcome 

(in terms of BMI) to label users. Under CIA, the matching estimator is consistent when 

the comparison group has the same distribution of observables determining health 

outcomes and selection as the label user group. 

Most studies apply the propensity score matching technique in the case of 

binary treatments due to the wide availability of user written syntaxes that have made 

matching a simple estimation procedure. Generalizations in the case of multiple 

treatments (Imbens, 2000, Joffe and Rosenbaum, 1999, Lu et al., 2001) and continuous 

treatments (Hirano and Imbens, 2004) have also appeared but have not garnered much 

empirical attention yet. A workaround for the multiple treatment case was proposed by 

Lechner  (2002), who employed several (matching) estimation methods for the multiple 

treatment case of active labor markets in the Swiss Canton of Zurich. He derived the 

probabilities used for the propensity scores from both a multinomial probit model and 

from all the possible binomial probits.  He then compared the results and produced 

roughly the same answers. 

Formally, in the binary treatment case, we assume that there is a variable Ti 

indicating treatment, which equals one if individual i uses nutritional labels (treated 

case) and zero if individual i does not use nutritional labels (control case). The 

propensity score is defined as the conditional probability of receiving a treatment 

(using nutritional labels) given pre-treatment (not using nutritional labels) 

characteristics X: 

Pr 1| |p X T X E T X     (1) 

If we define the health outcomes as H0i and H1i for the associated states 0 and 1, then 

the treatment effect for an individual i can be written as: 

1 0i i it H H        (2) 

However, we do not know ti for everyone since we can only observe  

1 01i i i i iH TH T H      (3) 

i.e. either 0iH  or 1iH . Since this problem cannot be solved at the individual level, it is 

recasted at the population level by estimating average treatment effects. The parameter, 
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which receives most attention in the literature is the average treatment effect on the 

treated:  

1 0| 1 | 1 | 1ATTt E t T E H T E H T   (4) 

The problem with equation (4) is that the term 0 | 1E H T  is not observed and if one 

tries to substitute this with 0 | 0E H T , this would lead to “self-selection bias”. 

The following assumptions are needed to derive (4) given (1) (see also (Caliendo and 

Kopeinig, 2005, Becker and Ichino, 2002, Heckman et al., 1998, Imbens, 2000): 

Assumption 1. Balancing of pre-treatment variables 

   |  T X p X       (5) 

Assumption 2. Uncofoundedness/ignorable treatment assignment (Rosenbaum and 

Rubin, 1983) or conditional independence (Lechner, 2002) or exogeneity (Imbens, 

2004) 

0 1,   T |  ,    H H X X      (6) 

Assumption 3. Common support or overlap condition 

0 1| 1p T X       (7) 

Given assumptions 1, 2, and 3, the propensity score matching estimator is (Becker and 

Ichino, 2002, Caliendo and Kopeinig, 2005): 

1 0

1 0

| 1,

| 1, | 0, | 1

PSM
ATTt E E H H T p X

E E H T p X E H T p X T
 (8) 

Equation (6) denotes the statistical independence of H0, H1  and T on X and implies, 

that selection is solely based on observable characteristics and that all variables that 

influence treatment assignment and potential outcomes simultaneously are observed by 

the researcher (Caliendo and Kopeinig, 2005). Using the exact set of the observed 

variables as required for CIA to hold is a necessary step for the unbiased estimation of 

treatment effects. Rosenbaum and Rubin (1983), showed that when (6) and (7) are 

satisfied then 0 1,   T |  ,    H H p X X  which reduces the dimensionality of the 

matching problem substantially. 

Assumption 3 has the unattractive feature that if the analyst has too much 

information about the decision of who takes treatment, so that 1| 1p T X  or 0 the 
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method fails because people cannot be compared at a common X. The method of 

matching assumes that, given X, some unspecified randomization device allocates 

people to treatment (Heckman and Navarro-Lozano, 2004). 

The method of matching with a known conditioning set does not require 

separability of outcome or choice equations, exclusion restrictions, or adoption of 

specific functional forms of outcome equations that are common in conventional 

selection methods and conventional instrumental variable formulations (Heckman and 

Navarro-Lozano, 2004). Furthermore, the method does not require exogeneity of 

conditioning variables.  Lechner (2007) showed that it does not matter when some 

control variables may be influenced by the treatment as long as the usual formulation of 

the CIA holds.  He then proposed an alternative formulation of the CIA together with 

explicit exogeneity conditions.  

 

III. THE DATA 

The data for our analysis come from the 2005-2006 National Health and 

Nutrition Examination Survey (NHANES), the latest available dataset. NHANES is 

designed to assess the health and nutritional status of adults and children in the 

US and is unique in that it combines interviews and physical examinations. The 

interview component includes demographic, socioeconomic, dietary, and health-

related questions. The examination component consists of medical, dental, and 

physiological measurements, as well as laboratory tests administered by highly 

trained medical personnel. 

Nutritional label use (i.e., use of Nutrition Fact Panels (NFP)) was 

measured on a five likert scale (never, rarely, sometimes, most of the time, 

always). Exploiting the full scale of the NFP variable requires recasting our 

propensity score matching exercise to the multiple treatment level case. However, even 

though there is an abundance of user written modules available to do matching for the 

binary treatment case, this is not the case for multiple treatments. A practical alternative 

as suggested by Lechner (2002) is to estimate a series of binomial models instead of 

modelling the joint selection process. The advantage is that a misspecification in one of 

the series will not compromise all others as would be the case in the multi-treatment 

model. The disadvantage is that the number of models to be estimated increases 



 9 

disproportionately to the number of options i.e. for L  options we need 0.5 1L L  

models. Therefore, in our case for the 5 ordered treatments of the NFP reading variable, 

10 binomial models need to be estimated. This means that each category is pairwise 

compared to all others (e.g. 5 vs. 4, 5 vs. 3, 4 vs. 2, 3 vs. 1 etc.).  As indicated earlier, 

Lechner (2002) compared a multinomial probit with a series of binomial probits and 

found roughly the same answers/findings. 

We utilize measured, not self-reported, body weight and height for our 

BMI measure. In general, the variables we use in our estimations are grouped 

into five categories: socio-demographic, risky behavior, lifestyle, knowledge and 

health situation variables. Although we realize that some of these control 

variables could possibly be endogenous, Lechner (2007) proved that this would not 

be a problem as long as the CIA holds. Socio-demographic variables include age, 

gender, race, education, household, size and income. Risky behavior variables 

consist of alcohol consumption, drug use, smoking status and engaging in safe 

sexual behaviour. Lifestyle variables consist of variables for Food-Away-From-

home consumption, exercise frequency, perceived healthfulness of diet and food 

security of the household. Knowledge variables include variables that indicate if 

a doctor advised to reduce weight or eat less fat due to cholesterol problems or 

other chronic diseases, perceived knowledge of the Dietary Guidelines, the Food 

Guide Pyramid and the 5-a-Day program and a dietary variable indicating self-

efficacy (“Some people are born to be fat and some thin; there is not much you can do 

to change this.”). Health Situation variables include pregnancy status, diabetes status, 

chronic diseases status and intake of diabetic medicine status. Observations with 

missing values for the variables of interest were dropped from all subsequent analysis. 

The sample size of our analysis is 4346. Descriptions of the variables used in our 

analysis are exhibited in Table 1.  
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Table 1. Variable description 

  Variables Variable description Mean 
Std. 

Error 

 BMI Body Mass Index 28.81 6.79 

 LabelUse1
*
 Dummy, Never reads Nutrition Fact Panels 0.32 0.47 

 LabelUse2 Dummy, Rarely reads Nutrition Fact Panels 0.099 0.30 

 LabelUse3 Dummy, Sometimes reads Nutrition Fact Panels 0.22 0.42 

 LabelUse4 Dummy, Most of the time reads Nutrition Fact Panels 0.19 0.39 

 LabelUse5 Dummy, Always reads Nutrition Fact Panels 0.17 0.37 

D
em

o
g
ra

p
h
ic

 

Gender Dummy, Gender of the respondent 0.48 0.50 

Age Age of the respondent 47.32 18.50 

Race1
*
 Dummy, Hispanic race 0.22 0.42 

Race2 Dummy, Ethnicity is non-Hispanic White 0.51 0.50 

Race3 Dummy, Ethnicity is non-Hispanic Black 0.23 0.42 

Race4 Dummy, Other ethnicity 0.04 0.20 

Educ1
*
 Dummy, High school grad/GED or equivalent 0.50 0.50 

Educ2 Dummy, Some College or Asociate of Arts degree 0.29 0.45 

Educ3 Dummy, College graduate or above 0.21 0.40 

Hsize Household size 3.08 1.62 

Inc1
*
 Dummy, Annual household income<$24,999 0.30 0.46 

Inc2 Dummy, $25,000<Annual household income<$54,999 0.34 0.47 

Inc3 Dummy, Annual householld income>$55,000 0.36 0.48 

R
is

k
y
 b

eh
av

io
r 

DrinkDay 

Average number of alcoholic drinks per day consumed over 

the past 12 months 0.10 0.29 

DrugUser 

Dummy, Respondent has used during the last month either 

of: hashish, marijuanna, cocaine, heroin, methampetamine 0.08 0.27 

NoSmoke Dummy, Respondent doesn't smoke 0.25 0.43 

SafeSex 

Dummy, Respondent has never had sexual intercourse 

without a condom, over the past 12 months 0.10 0.30 

L
if

es
ty

le
 

MealsFAFH Number of meals per week not prepared at home 3.25 3.61 

MET Total Metabolic Equivalent rate of activities 8.57 12.04 

HealthyDiet1
*
 Dummy, Respondent rates overall diet as poor 0.06 0.24 

HealthyDiet2 Dummy, Respondent rates overall diet as fair 0.23 0.42 

HealthyDiet3 Dummy, Respondent rates overall diet as good 0.39 0.49 

HealthyDiet4 Dummy, Respondent rates overall diet as very good 0.22 0.42 

HealthyDiet5 Dummy, Respondent rates overall diet as excellent 0.09 0.29 

FoodSecur1
*
 Dummy, Household's food security is low or very low 0.14 0.34 
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FoodSecur2 Dummy, Household's food security is marginal 0.09 0.28 

FoodSecur3 Dummy, Household's food security is full 0.77 0.42 

K
n
o
w

le
d
g
e 

DoctAdv1 Dummy, Doctor instructed to eat less fat for cholesterol 0.22 0.41 

DoctAdv2 Dummy, Doctor instructed to reduce weight for cholesterol 0.15 0.36 

DoctAdv3 

Dummy, Doctor instructed to eat less fat to lower the risk 

for certain diseases 0.24 0.43 

DoctAdv4 

Dummy, Doctor instructed to reduce weight to lower the 

risk for certain diseases 0.28 0.45 

KnowDG Dummy, Respondent has heard of Dietary Guideliness 0.43 0.50 

KnowFGP Dummy, Respondent has heard of Food Guide Pyramid 0.71 0.45 

Know5AD Dummy, Respondent has heard of 5-a-Day program 0.46 0.50 

Born2beFat1
*
 

Dummy, Respondent strongly disagrees that some people 

are born to be fat 0.28 0.45 

Born2beFat2 

Dummy, Respondent somewhat disagrees that some people 

are born to be fat 0.25 0.43 

Born2beFat3 

Dummy, Respondent neither agrees or disagrees that some 

people are born to be fat 0.12 0.32 

Born2beFat4 

Dummy, Respondent somewhat agrees that some people 

are born to be fat 0.24 0.43 

Born2beFat5 

Dummy, Respondent strongly agrees that some people are 

born to be fat 0.11 0.32 

H
ea

lt
h
 S

it
u
at

io
n
 

Pregnant Dummy, Respondent is pregnant 0.07 0.26 

DocDiabet 

Dummy, Respondent was told by a doctor that has diabete, 

prediabetes or at risk for diabetes 0.24 0.43 

DiabMedicine Dummy, Respondent takes either insulin or diabetic pills 0.09 0.28 

Chronic 

Dummy, Respondent suffers from coronary heart disease, 

heart attack, stroke or liver condition 0.11 0.31 

These variables were removed for estimation purposes. 

 

IV. ESTIMATION AND RESULTS 

1. Plausibility of CIA and propensity score estimation 

Before we proceed to the estimation of the propensity score, we have to support 

the plausibility of CIA for our case. For CIA to be fulfilled, one has to condition on all 

variables that simultaneously influence the participation decision and the outcome 

variable. Although CIA is a strong assumption, given that we have an extremely rich 

and informative dataset that allows us to control for a wide variety of socio-

demographic variables, risky behavior, lifestyle, knowledge and current health situation, 

we argue that the CIA holds. Furthermore, in a latter section, we conduct sensitivity 
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analysis to explore how sensitive our estimates are to potential failures of the CIA 

assumption.  

As far as the estimation of the propensity score is concerned, there is no clear 

cut rule on which variables to include in the treatment equation or on the functional 

form of the probabilistic model. Regarding the choice for the latter, usually a probit or a 

logit model is estimated. Lechner (2002) compared binary probit models with a 

multinomial probit and concluded that results between the models are roughly the same. 

Given the absence of comparisons between logistic and multinomial logit models, we 

then proceed by estimating binary probits. 

Regarding the probit specifications, there are some formal statistical tests which 

can be used. Two such tests are the “hit-or-miss” method or prediction rate metric 

(Heckman et al., 1997) and the pseudo- 2R . The latter indicates how well the regressors 

X  explain the participation probability. With the hit-rate, variables are chosen to 

maximize the within-sample correct prediction rates, assuming that the costs for 

misclassification are equal for the two groups. The method classifies an observation as 

„1‟ if the estimated propensity score is larger than the sample proportion of persons 

taking treatment, i.e. ˆ( )P X P , and as „0‟ otherwise. 

Both of these statistics have been estimated for several specifications of all 10 

binary models. As mentioned in the previous section, variables were grouped into one 

of the following five categories: socio-demographic, risky behaviour, lifestyle, 

knowledge and health situation. The base specification includes variables from only 

one of the aforementioned categories. Then all possible combinations of two, three and 

four categories and of the full specification are tested. In all, we tested 31 different 

specifications. Based on the pseudo- 2R , the full specification does the best job in 

explaining the participation probability in all models. Given that in most cases the hit-

rates from the full specification are equivalent to other specifications and since there is 

no economic justification in excluding categories of variables, we use the full 

specification
2
.  

                                                
2 The reader should be aware that relying solely on goodness-of-fit criteria is not without warnings. 

Heckman and Navarro-Lozano (2004) offer examples where application of goodness-of-fit criteria point 

to selection of conditioning sets that are less successful in terms of a model selection criterion. However, 

these are still offered as possible solutions in the literature (Black and Smith, 2004; Caliendo and 

Kopeinig, 2008; Heckman,  Ichimura and Todd, 1997) and the reader should not take such tests at face 

value.  
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Hence, the selection between treatment levels is expressed through the function: 

2 3 4 2 3 2 3

2 3

4 5 2 3

,  ,  ,  ,  , ,  ,  ,  ,  ,  ,

, ,  ,  ,  ,  ,  ,

, ,  ,  ,  

Gender Age Race Race Race Educ Educ Hsize Inc Inc DrinkDay

DrugUser NoSmoke SafeSex MealsFAFH MET HealthyDiet HealthyDiet

HealthyDiet HealthyDiet FoodSecur FoodSecur D
T f

1 2

3 4 2

3 4 5

,  ,

,  , ,  ,  5 ,  2 ,  

2 , 2 , 2 , ,  ,  

,  

octAdv DoctAdv

DoctAdv DoctAdv KnowDG KnowFGP Know AD Born beFat

Born beFat Born beFat Born beFat Pregnant DocDiabet

DiabMedicine Chronic

(9) 

Variables used in (9) are described in Table 1. Since we controlled for an exhaustive 

list of variables in equation (9), we expect to have very minimal unobserved 

heterogeneity left, if any, that is systematically correlated with the health outcome 

under investigation (BMI) and participation decision.  In a later section, however, we 

tested the sensitivity of our results on possible unobserved heterogeneity or hidden bias.   

The results from the propensity score estimations (we used the probability 

weights provided with the NHANES dataset) are summarized in Table 2. The “k vs. n” 

model (where k=1 to 5 and n=1 to 4) denotes the pairwise comparison of the k level of 

the NFP use to the n level of NFP use. For example, the “5 vs. 4” compares those that 

use the NFP label “always” (k=5) with those that use the NFP label “most of the time” 

(n=4). With respect to the socio-demographic variables, we find that males (Gender) 

and non-Hispanic white individuals (Race2) are less likely to read NFPs. Education and 

income do have the expected effect i.e. the more education and the higher the income 

of individuals are, the more likely they are to read the NFP. Household size on the 

other hand is negatively related to NFP reading.  

Some variables that were used to capture risky behaviour also have significant 

effects. For example, there is some indication that drug users are less likely to read 

NFPs while non-smokers are more likely to read the nutrition panel. With respect to 

lifestyle variables, we find that higher metabolic equivalent rates (MET), higher 

perceived healthiness of diet and higher household food security are all positively 

related to NFP reading probability. 

Knowledge has a positive effect on NFP reading as well. Although not all 

variables are statistically significant, there is some indication that knowledge as 

expressed through doctors‟ advice and perceived knowledge of the Dietary Guidelines, 

the Food Guide Pyramid and the 5-a-Day program are all related to NFP reading. In 

addition, agreeing to the dietary attitude that “some people are born to be fat and that 
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there is nothing you can do to change that” is negatively related to the probability of 

reading the NFP. Current health situation is also a good predictor of NFP search 

behaviour. A diabetic condition i.e. diagnosed with diabetes or taking insulin or pill to 

control it, positively affects NFP reading. Interestingly, pregnant women are less likely 

to read NFP‟s. 

 

Table 2. Probit models for label use 

 Models 

Variables 5 vs. 4 5 vs. 3 5 vs. 2 5 vs. 1 4 vs. 3 4 vs. 2 4 vs. 1 3 vs. 2 3 vs. 1 2 vs. 1 

Gender 0.014 -0.312** -0.644** -0.757** -0.342** -0.733** -0.845** -0.353** -0.565** -0.246** 

Age -0.004 0.002 0.005 0.002 0.004 0.008** 0.003 0.001 -0.001 0.001 

Race2 -0.524** -0.265** -0.292** -0.223* 0.208* 0.116 0.187 -0.078 -0.066 -0.078 

Race3 -0.254* -0.083 -0.195 -0.113 0.099 -0.092 0.032 -0.152 -0.121 -0.053 

Race4 -0.494** -0.152 -0.290 -0.424** 0.304 0.156 -0.066 -0.098 -0.327* -0.362* 

Educ2 0.054 0.148 0.187 0.384** 0.102 0.161 0.352** 0.066 0.291** 0.232** 

Educ3 -0.160 0.059 0.270* 0.552** 0.228** 0.479** 0.727** 0.196 0.494** 0.322** 

Hsize -0.042 -0.084** -0.079** -0.105** -0.058** -0.048 -0.099** -0.015 -0.048* -0.027 

Inc2 -0.009 0.109 -0.063 0.167* 0.100 -0.027 0.180* -0.171 -0.007 0.149 

Inc3 -0.129 -0.058 -0.250* 0.284** 0.036 -0.178 0.324** -0.183 0.297** 0.447** 

DrinkDay -0.109 0.034 0.130 0.014 0.061 0.246* 0.018 0.060 -0.066 -0.196 

DrugUser -0.013 -0.238 -0.260 -0.091 -0.261* -0.328* -0.139 -0.036 0.032 0.060 

NoSmoke 0.064 0.203** -0.021 0.193** 0.105 -0.092 0.144 -0.121 0.005 0.133 

SafeSex 0.008 -0.075 0.017 -0.049 -0.102 0.108 0.058 0.158 0.013 -0.096 

MealsFAFH -0.009 -0.009 0.004 0.019 -0.003 0.004 0.024** 0.006 0.020** 0.022* 

MET -0.001 0.007** 0.012** 0.008** 0.009** 0.015** 0.008** 0.007* 0.004 0.000 

HealthyDiet2 -0.179 -0.131 -0.119 0.352* 0.038 0.059 0.460** -0.027 0.468** 0.383** 

HealthyDiet3 -0.005 0.164 0.256 0.810** 0.192 0.297 0.846** 0.102 0.697** 0.568** 

HealthyDiet4 0.148 0.628** 0.672** 1.274** 0.514** 0.545** 1.129** 0.077 0.789** 0.538** 

HealthyDiet5 0.830** 1.115** 1.095** 1.343** 0.369 0.470 0.696** 0.141 0.405** 0.187 

FoodSecur2 0.074 0.183 0.227 -0.080 0.102 0.095 -0.156 -0.038 -0.197 -0.228 

FoodSecur3 0.159 0.381** 0.370* 0.163 0.174 0.078 0.045 -0.008 -0.061 -0.064 

DoctAdv1 0.041 0.047 0.345 0.209 0.041 0.430** 0.317** 0.352** 0.184 -0.207 

DoctAdv2 -0.061 -0.001 -0.157 0.027 0.103 -0.140 -0.011 -0.120 0.132 0.204 

DoctAdv3 0.000 -0.109 -0.129 0.131 -0.079 -0.099 0.120 -0.145 0.069 0.186 
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DoctAdv4 0.066 0.164 0.216 0.428** 0.101 0.135 0.366** 0.132 0.352** 0.198 

KnowDG -0.013 0.007 0.133 0.224** 0.003 0.143 0.226** 0.138 0.229** 0.100 

KnowFGP 0.147 0.168 0.308** 0.595** 0.033 0.212 0.455** 0.102 0.354** 0.306** 

Know5AD 0.022 0.093 -0.016 0.300** 0.053 -0.047 0.215** -0.047 0.216** 0.237** 

Born2beFat2 -0.160 -0.247** -0.310** -0.223** -0.133 -0.212* -0.123 -0.065 0.062 0.149 

Born2beFat3 -0.065 -0.162 -0.439** -0.441** -0.043 -0.350** -0.345** -0.244 -0.202 0.033 

Born2beFat4 -0.104 -0.124 0.017 -0.270** -0.036 0.162 -0.125 0.144 -0.114 -0.218* 

Born2beFat5 0.259 0.055 0.323 -0.134 -0.254 -0.039 -0.399** 0.185 -0.217* -0.323** 

Pregnant 0.055 -0.445* 0.032 -0.146 -0.465** -0.015 -0.125 0.280 0.247 -0.037 

DocDiabet 0.151 0.256** 0.432** 0.069 0.057 0.269** -0.072 0.152 -0.146 -0.237* 

DiabMedicine -0.077 0.163 0.280 0.410** 0.302* 0.457* 0.549** 0.207 0.240 0.034 

Chronic 0.129 -0.054 0.169 -0.181 -0.156 0.122 -0.291** 0.240 -0.101 -0.263* 

Constant 0.347 -0.658** -0.365 -1.743** -0.801** -0.477 -1.710** 0.481 -0.920** -1.426** 

* (**) Statistically significant at the 10% (5%) level. 

 

2. The matching procedure 

The next step in the calculation of the propensity score estimator as expressed in 

equation (8) is the choice of a matching algorithm. Asymptotically, all matching 

algorithms should yield the same results. However, in practice there are trade offs in 

terms of bias and efficiency involved with each algorithm. Caliendo and Kopeinig 

(2005) suggest to try a number of approaches.  Hence, we implement six matching 

algorithms (i.e. one-to-one nearest neighbor, kernel matching, local linear, spline 

smoothing and radius matching with caliper levels 0.1 and 0.01)
3
. 

Testing the statistical significance of ATT and the computation of standard 

errors is not a straightforward task because the estimation steps that precede the 

matching process add variation. We used bootstrapping to address this problem, which 

we repeated 400 times for each of the matching algorithms to derive the bootstrapped 

standard errors of ATT. We did not calculate the bootstrap estimator for nearest 

neighbour matching since Abadie and Imbens (2006) show that the bootstrap variance 

estimator is invalid for nearest neighbour matching. 

Table 3 exhibits the estimated ATT‟s for each model (standard errors and 95% 

confidence intervals are also provided). Bold number and asterisks indicate statistically 

significant effects. We first comment on the statistical significance of our estimates for 

                                                
3
 The matching process was carried out with the psmatch2 module in Stata (Leuven and Sianesi, 2003). 
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the unmatched cases. All the models comparing a specific NFP reading level versus the 

“never” reading NFP case (i.e. 5 vs. 1, 4 vs. 1, 3 vs. 1 and 2 vs. 1) exhibit statistically 

significant estimates.  For example, for (5 vs 1) model in the unmatched case, those 

who always read the NFP have 0.93 unit higher BMI than those who never read NFPs.  

Similarly, based on the (2 vs 1) model in the unmatched case, those who rarely read 

NFPs have 0.70 unit higher BMI than those who never read NFPs.  Hence, based on the 

unmatched cases, one might conclude that nutritional label use increases BMI even 

though the magnitudes of these effects are quite small.  However, after matching, we 

find that a vast majority of the ATTs are not statistically significant.  Hence, in most 

cases and in general, we cannot reject the null hypothesis of no effect. 

To further test the credibility of these results, we conducted robustness tests as 

well as examined the sensitivity of the results due to unobserved heterogeneity (hidden 

bias).  These are discussed in later sections of the paper. 

 

3. Common support 

It is important to check the overlap or common support region for the treated and 

untreated individuals. A visual analysis of the density distributions of the propensity 

scores is shown in Figure 1. The bottom-half of each graph shows the propensity score 

distribution for the non-treated, while the upper-half refers to the treated individuals. 

Problems would arise if the distributions did not overlap. We imposed the common 

support using the “minima and maxima comparison”. The basic criterion of this 

approach is to delete all observations whose propensity score is smaller than the 

minimum and larger than the maximum in the opposite group. Hence, we removed 

from our analysis the treated individuals who fall outside the common support region. 

Table 4 contains the number of observations lost in each model and the propensity 

score regions after the common support imposition. The number of lost observations in 

most cases is quite low. Specifically, we lost only a very small fraction (0.5%) of the 

sample in a vast majority of the models.   
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Table 3. Average treatment effects on the treated (ATT) for different matching algorithms  

 5 vs. 4 5 vs. 3 5 vs. 2 5 vs. 1 4 vs. 3 4 vs. 2 4 vs. 1 3 vs. 2 3 vs. 1 2 vs. 1 

 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

Unmatched 
0.208 

(0.340) 

-0.001 

(0.326) 

0.232 

(0.408) 

0.933** 

(0.323) 

-0.208 

(0.308) 

0.024 

(0.386) 

0.725** 

(0.306) 

0.232 

(0.375) 

0.933** 

(0.289) 

0.701* 

(0.387) 

One-to-One nearest 

neighbor
2
 

-0.068 

(0.480) 

-0.631 

(0.505) 

0.536 

(0.688) 

0.127 

(0.647) 

0.337 

(0.408) 

0.792 

(0.667) 

0.596 

(0.537) 

-0.450 

(0.554) 

0.952** 

(0.472) 

-0.041 

(0.687) 

Local linear 

regression 

0.076 

(0.356) 

[-0.62, 0.77] 

0.055 

(0.378) 

[-0.68, 0.80] 

0.311 

(0.593) 

[-0.85, 1.47] 

0.661 

(0.657) 

[-0.63, 1.95] 

0.020 

(0.357) 

[-0.68, 0.72] 

0.445 

(0.563) 

[-0.66, 1.55] 

0.642 

(0.505) 

[-0.35,  1.63] 

-0.090 

(0.458) 

[-0.99, 0.81] 

0.805** 

(0.367) 

[0.09, 1.52] 

0.712* 

(0.429) 

[-0.13, 1.55] 

Spline-smoothing 

0.111 

(0.359) 

[-0.59, 0.81] 

0.052 

(0.354) 

[-0.64, 0.75] 

0.254 

(0.591) 

[-0.91, 1.41] 

0.671 

(0.556) 

[-0.42, 1.76] 

0.035 

(0.337) 

[-0.63, 0.70] 

0.326 

(0.537) 

[-0.73, 1.38] 

0.671 

(0.503) 

[-0.31, 1.66] 

-0.109 

(0.455) 

[-1.00, 0.78] 

0.785** 

(0.359) 

[0.08, 1.49] 

0.648* 

(0.385) 

[-0.11, 1.40] 

Kernel 

(epanechnikov) 

0.115 

(0.380) 

[-0.63, 0.86] 

0.064 

(0.362) 

[-0.65, 0.77] 

0.180 

(0.579) 

[-0.95, 1.31] 

0.662 

(0.642) 

[-0.60, 1.92] 

0.010 

(0.331) 

[-0.64, 0.66] 

0.243 

(0.532) 

[-0.80, 1.29] 

0.617 

(0.466) 

[-0.30, 1.53] 

-0.081 

(0.433) 

[-0.93, 0.77] 

0.774** 

(0.356) 

[0.07, 1.47] 

0.669 

(0.431) 

[-0.18, 1.51] 

Radius, Caliper=0.1 

0.087 

(0.374) 

[-0.65, 0.82] 

0.039 

(0.358) 

[-0.66, 0.74] 

0.166 

(0.556) 

[-0.92, 1.26] 

0.654 

(0.600) 

[-0.52, 1.83] 

-0.055 

(0.312) 

[-0.67, 0.56] 

0.023 

(0.511) 

[-0.98, 1.02] 

0.676 

(0.437) 

[-0.18, 1.53] 

-0.059 

(0.396) 

[-0.84, 0.72] 

0.803** 

(0.359) 

[0.10, 1.51] 

0.680* 

(0.402) 

[-0.11, 1.47] 

Radius, 

Caliper=0.01 

0.010 

(0.377) 

[-0.73, 0.75] 

-0.020 

(0.359) 

[-0.72, 0.68] 

0.367 

(0.568) 

[-0.75, 1.48] 

0.434 

(0.642) 

[-.82, 1.69] 

0.031 

(0.346) 

[-0.65, 0.71] 

0.494 

(0.504) 

[-0.49, 1.48] 

0.673 

(0.472) 

[-0.25, 1.60] 

-0.217 

(0.443) 

[-1.09, 0.65] 

0.774** 

(0.372) 

[0.04, 1.50] 

0.818* 

(0.431) 

[-0.03, 1.66] 
1
 Bootstrap standard errors for ATT except nearest neighbor, N=400 replications. 

2
 With replacement, no caliper. 

* (**) Statistically significant at the 10% (5%) level. 
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Figure 1. Propensity scores by model 
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Table 4. Number of treated individuals lost due to common support requirement and 

range of the propensity scores after comon support imposition
a
 

 Before After 
Lost in % 

Probability scores 

Models Matching Min Max 

5 vs. 4 1550 1544 0.39 0.155 0.900 

5 vs. 3 1704 1698 0.35 0.056 0.932 

5 vs. 2 1163 1144 1.63 0.031 0.984 

5 vs. 1 2125 2122 0.14 0.000 0.986 

4 vs. 3 1790 1781 0.50 0.076 0.814 

4 vs. 2 1249 1209 3.20 0.057 0.960 

4 vs. 1 2211 2168 1.94 0.001 0.965 

3 vs. 2 1403 1399 0.29 0.328 0.946 

3 vs. 1 2365 2335 1.27 0.021 0.917 

2 vs. 1 1824 1823 0.05 0.008 0.772 
a
 We used the minima-maxima restriction as common support condition. 

 

4. Matching quality 

In this section, we check whether the matching procedure is able to balance the 

distribution of the relevant variables. One way to do this is to check if there are 

differences remaining after conditioning on the propensity score, using the standardized 

bias (SB) measure proposed by Rubin (1991). For each covariate X, the SB is the 

difference of the sample means in the treated and matched comparison sub-samples as a 

percentage of the square root of the average of the sample variances in both groups. For 

abbreviation, we calculated the means of the SB (MSB) before and after matching by 

model and matching estimator (Table 5). The overall bias before matching lies between 

8.28% and 26.92%. After matching, the bias is significantly reduced for the nearest 

neighbour, local-linear and spline-smoothing estimators and even more so for the 

kernel and radius estimators, so that the bias after matching is as low as 2.36% (Radius 

cal=0.01, “4 vs. 3” model). These results clearly show that the matching procedure is 

able to balance the characteristics in the treated and the matched comparison groups. 

Another approach uses a two sample t-test to check if there are significant 

differences in covariate means for both groups (see Caliendo and Kopeinig (2008) for a 

discussion). We performed these tests as well but do not present them due to space 

considerations. Before matching, several variables exhibit statistically significant 

differences. However, after matching, the covariates in most cases are balanced and no 
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significant differences can be found. It appears, however, that the kernel and radius 

matching estimators are able to more accurately balance the covariates. 

We also calculated the pseudo-R
2
 before and after matching (see Table 5). The 

pseudo-R
2
 indicates how well the regressors explain the participation probability. After 

matching, there should be no systematic differences in the distribution of covariates 

between both groups and the pseudo-R
2
 should be low. As the results show, this is true 

for our matching estimators. Finally, we perform a likelihood ratio test on the joint 

significance of all regressors. Before matching, the test should be accepted. A rejection 

of the test after matching reflects a good balancing of the covariates. As exhibited in 

Table 5, this is also true in most of our cases. 

 

5. Robustness checks
4
 

To test the  robustness of our estimates, we estimate the ATT‟s on the region of 

“thick support” defined by 0.33< P̂ X <0.67 as suggested by Black and Smith (2004). 

Black and Smith adopted this approach due to two concerns: (a) the fact that 

respondents with high estimated propensity scores observed at low levels of treatments 

may actually represent respondents with measurement error in the treatment variable 

and (b) residual selection on unobservables, which they demonstrate will have its 

largest effect on the bias for values of the propensity score in the tails of the 

distribution. Therefore, they attribute the larger estimates from the thick support area in 

their study to either (a), (b) or to heterogeneous treatment effects that will have higher 

impacts for middle values of the propensity score. 

As exhibited in Table 6, our thick-support estimates in the majority of the cases are 

greater than the baseline ones. Hence, similar to Black and Smith, we could not rule out 

that this difference is due to measurement error in label use or residual selection on 

unobservables.  In the next section, we further test and discuss the effect of any 

unobserved heterogeneity/hidden bias on our estimates. 

                                                
4 In addition to estimation of the thick support area, we used an older dataset from the 1994-1996 

Continuing Survey of Food Intakes for Individuals (CSFII) and performed the matching exercise to this 

sample as well. Results are generally consistent and supportive of our main finding. In addition, we 

performed random sub-sampling and out-of-sample predictions with the NHANES dataset and re-

estimated ATT‟s. Main conclusions remain unchanged. 
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Table 5. Quality of matching indicators 

  Models 

  5 vs. 4 5 vs. 3 5 vs. 2 5 vs. 1 4 vs. 3 4 vs. 2 4 vs. 1 3 vs. 2 3 vs. 1 2 vs. 1 

 Before matching                     

 Mean absolute bias 7.28 13.48 18.76 26.02 10.73 16.71 26.92 7.50 18.38 14.02 

 Pseudo R
2
 0.06 0.11 0.19 0.31 0.07 0.15 0.29 0.04 0.16 0.09 

 
LR chi

2 
(p-value) 

120.11 

(0.00) 

261.82 

(0.00) 

296.43 

(0.00) 

843.38 

(0.00) 

165.64 

(0.00) 

243.92 

(0.00) 

854.15 

(0.00) 

69.27 

(0.00) 

524.08 

(0.00) 

188.07 

(0.00) 

  After matching           

Nearest 

Neighbor / 

Local-linear / 

Spline-

Smoothing 

Mean absolute bias 5.06 4.86 8.17 6.29 3.22 6.18 6.40 5.39 4.44 5.08 

Pseudo R
2
 0.02 0.02 0.05 0.03 0.01 0.03 0.03 0.03 0.02 0.03 

LR chi
2 
(p-value) 37.33 

(0.45) 

44.12 

(0.20) 

101.20 

(0.00) 

68.23 

(0.01) 

25.61 

(0.92) 

74.15 

(0.00) 

63.11 

(0.01) 

69.89 

(0.00) 

44.91 

(0.17) 

34.02 

(0.61) 

Kernel 

Mean absolute bias 3.74 3.92 5.79 3.81 2.50 5.88 4.41 4.12 3.04 2.99 

Pseudo R
2
 0.011 0.01 0.03 0.02 0.004 0.02 0.01 0.008 0.007 0.009 

LR chi
2 
(p-value) 

22.30 

(0.97) 

26.24 

(0.91) 

61.33 

(0.01) 

30.81 

(0.75) 

9.41 

(1.00) 

38.50 

(0.40) 

29.92 

(0.79) 

22.22 

(0.97) 

18.28 

(1.00) 

10.49 

(1.00) 

Radius, cal=0.1 

Mean absolute bias 3.67 3.71 5.55 4.07 2.62 5.77 4.33 3.75 3.40 3.26 

Pseudo R
2
 0.01 0.01 0.03 0.02 0.01 0.02 0.01 0.01 0.01 0.01 

LR chi
2 
(p-value) 

23.64 

(0.96) 

27.08 

(0.88) 

60.29 

(0.01) 

30.95 

(0.75) 

11.49 

(1.00) 

36.44 

(0.49) 

25.45 

(0.92) 

25.60 

(0.92) 

19.09 

(0.99) 

10.56 

(1.00) 

Radius, cal=0.01 

Mean absolute bias 3.51 3.99 6.80 4.08 2.36 6.22 4.08 4.29 3.14 3.19 

Pseudo R
2
 0.01 0.01 0.04 0.01 0.005 0.02 0.01 0.011 0.01 0.010 

LR chi
2 
(p-value) 

21.22 

(0.98) 

25.88 

(0.92) 

72.07 

(0.00) 

28.20 

(0.85) 

11.41 

(1.00) 

41.19 

(0.29) 

26.10 

(0.91) 

28.57 

(0.84) 

20.83 

(0.98) 

11.29 

(1.00) 



 22 

Table 6. Average treatment effects on the treated (ATT) for different matching algorithms (thick support region) 

 5 vs. 4 5 vs. 3 5 vs. 2 5 vs. 1 4 vs. 3 4 vs. 2 4 vs. 1 3 vs. 2 3 vs. 1 2 vs. 1 

 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

ATT diff. 

(S.E.
1
) 

[95% CI] 

One-to-One nearest 

neighbor
2
 

-0.132 

(0.538) 
-1.213* 

(0.697) 

0.819 

(0.838) 
1.267* 

(0.684) 

0.558 

(0.469) 

1.072 

(0.842) 

0.420 

(0.729) 

0.285 

(0.696) 
1.387** 

(0.608) 

-0.487 

(1.028) 

Local linear 

regression 

0.001 

(0.435) 

[-0.85, 0.85] 

-0.153 

(0.544) 

[-1.21, 0.91] 

0.750 

(0.730) 

[-0.68, 2.18] 

0.976 

(0.613) 

[-0.23, 2.18] 

0.140 

(0.380) 

[-0.60, 0.88] 

0.466 

(0.666) 

[-0.84, 1.77] 

0.853 

(0.665) 

[-0.45, 2.16] 

0.540 

(0.525) 

[-0.49, 1.57] 

0.799* 

(0.465) 

[-0.11, 1.71] 

0.827 

(0.722) 

[-0.59, 2.24] 

Spline-smoothing 

0.075 

(0.428) 

[-0.76, 0.91] 

-0.182 

(0.517) 

[-1.20, 0.83] 

0.816 

(0.644) 

[-0.45, 2.07] 

0.998* 

(0.558) 

[-0.10, 2.09] 

0.080 

(0.393) 

[-0.69, 0.85] 

0.450 

(0.590) 

[-0.71, 1.61] 

1.135* 

(0.578) 

[0.002, 2.27] 

0.370 

(0.535) 

[-0.68, 1.42] 

0.575 

(0.443) 

[-0.29, 1.44] 

1.109 

(0.688) 

[-0.24, 2.46] 

Kernel 

(epanechnikov) 

0.090 

(0.417) 

[-0.73, 0.91] 

-0.236 

(0.462) 

[-1.14, 0.67] 

0.724 

(0.624) 

[-0.51, 1.95] 

1.117** 

(0.555) 

[0.03, 2.20] 

0.067 

(0.399) 

[-0.72, 0.85] 

0.490 

(0.591) 

[-0.67, 1.65] 

1.150* 

(0.600) 

[-0.026, 2.33] 

0.426 

(0.544) 

[-0.64, 1.49] 

0.511 

(0.467) 

[-0.40, 1.43] 

1.035 

(0.699) 

[-0.34, 2.41] 

Radius, Caliper=0.1 

0.037 

(0.397) 

[-0.74, 0.82] 

-0.344 

(0.457) 

[-1.24, 0.55] 

0.623 

(0.606) 

[-0.56, 1.81] 

1.054* 

(0.555) 

[-0.03, 2.14] 

-0.025 

(0.402) 

[-0.81, 0.76] 

0.452 

(0.657) 

[-0.84, 1.74] 

1.134* 

(0.581) 

[-0.004, 2.27] 

0.589 

(0.522) 

[-0.43, 1.61] 

0.392 

(0.456) 

[-0.50, 1.29] 

1.049 

(0.648) 

[-0.22, 2.32] 

Radius, 

Caliper=0.01 

0.074 

(0.422) 

[-0.75, 0.90 

-0.211 

(0.547) 

[-1.28, 0.86] 

0.843 

(0.657) 

[-0.44, 2.13] 

0.989* 

(0.586) 

[-0.16, 2.14] 

0.136 

(0.410) 

[-0.67, 0.93] 

0.471 

(0.670) 

[-0.84, 1.78] 

0.961 

(0.671) 

[-0.35, 2.28] 

0.440 

(0.530) 

[-0.60, 1.48] 

0.707 

(0.444) 

[-0.16, 1.58] 

1.060 

(0.744) 

[-0.40, 2.52] 
1
 Bootstrap standard errors for ATT except nearest neighbor, N=400 replications. 

2
 With replacement, no caliper. 

* (**) Statistically significant at the 10% (5%) level. 
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6. Sensitivity analysis for hidden bias/unobserved heterogeneity 

Propensity-score matching estimators are based on the assumption that selection 

is based on observables characteristics. This means that conditional on the observed 

covariates, the process by which units are selected into treatment is unrelated to 

unmeasured variables that affect the outcome variable. These estimators are not 

consistent otherwise. In order to estimate the extent to which such “selection on 

unobservables” or “hidden bias” may bias the estimates, we conducted a sensitivity 

analysis which DiPrete and Gangl (2004) call Rosenbaum bounds and is laid out 

thoroughly in Rosenbaum (2002) and DiPrete and Gangl (2004). This method assesses 

the sensitivity of significance levels. We emphasize that the method cannot inform us if 

there is unobserved heterogeneity in the data. It can only tell us how much of this 

unobserved heterogeneity, if any, it would take to change inferences.   

When referring to hidden bias, we assume that some characteristics were not 

controlled for, since these were unobserved, and therefore were not included in X. 

Therefore, one wants to determine how strongly an unmeasured variable would 

influence the selection process and undermine the implications of the matching analysis. 

In brief, this approach assumes that the participation probability i  is not only 

determined by observable factors Xi but also by an unobservable component ui, so that: 

Pr 1|i i i i iT X F X u     (10) 

 is the effect of iu  on the participation decision. If there is no hidden bias  will be 

zero. If there is hidden bias, two individuals with the same observed covariates X would 

have different chances of receiving the treatment. Varying the value of  allows one to 

assess the sensitivity of the results with respect to hidden bias and derive bounds of 

significance levels. The available modules to conduct sensitivity analysis with 

Rosenbaum bounds can only be implemented in tests for matched (1x1) pairs. 

Therefore, we conducted sensitivity tests for the one-to-one nearest neighbour and 

spline smoothing estimators. Tables 13 exhibits the values from Wilcoxon signed rank 

tests for the average treatment effect on the treated when setting the value of e  at 

different levels
5
. 

                                                
5 We used the rbounds module in Stata for this estimation (Gangl, 2004). 
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First, we should describe how Table 7 should be read. For each model and 

matching estimator, we increased the level of e  until the inference about the treatment 

effect is changed. We report the value of and the critical p-value. The bold cells in 

the table indicate that these appeared as statistically significant when ATT‟s were 

estimated (Table 3). For an ATT that was not statistically significant, the critical value 

of  tells us at which degree of unobserved selection the effect would become 

significant. For some cells (e.g. “5 vs. 3” model, nearest neighbor) the effect becomes 

insignificant as the value of  is increased. We indicate the 5% level for estimates that 

turn from insignificant to significant and the 10% level for estimates that turn from 

significant to insignificant in the sense that these levels represent worst case scenarios. 

The opposite applies for the bold cells i.e. we report the value of  for which 

the effect would become insignificant, and in one case the value at which the effect 

would become significant again. This way we can assess how strong the influence from 

unobserved variables should be for the estimated ATT to change solely through 

nonrandom assignment (DiPrete and Gangl, 2004). For example, a critical value for 

of about 1.20 means that individuals with the same X covariates differ in their odds 

of participation by a factor of 20%. This result states that the null hypothesis of no 

treatment effect would not be rejected if an unobserved variable caused the odds ratio 

of treatment assignment to differ between treatment and comparison groups by 1.20 

and if this variable‟s effect on BMI was so strong as to almost perfectly determine 

whether the BMI would be bigger for the treatment or the control case in each pair of 

matched cases in the data.  

Based on the results exhibited in Table 7, we can conclude that the nearest 

neighbor estimator seems to be more sensitive to the existence of unobserved selection 

than the spline smoothing matching estimator, in the sense that much lower values of 

 are required for an insignificant effect to become significant. Similary, it would also 

generally take relatively low values of unobserved selection (between 1.01 to 1.20) to 

change a statistically significant effect into a statistically insignificant effect with the 

nearest neighbor estimator. For the spline smoothing matching estimator, our 

sensitivity analysis suggests that it would take much higher values of  to change an 

insignificant effect into a significant effect.  Given these results, it would be more 

prudent then in our case to rely more on the spline-smoothing estimates than the nearest 
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neighbor estimates. Given that a vast majority of our spline-smoothing ATT estimates 

are statistically insignificant (i.e., 8 out of 10), our sensitivity analysis suggests that 

these estimates would remain statistically insignificant even if we had substantial 

unobserved heterogeneity/selection.  In other words, it is not likely that nutritional label 

use will have an effect on BMI even in the presence of unobserved heterogeneity. 

 

Table 7. Rosenbaum bounds for BMI treatment effects  

 

One-to-One 

nearest neighbor 
Spline-smoothing 

Models Gamma  p-critical Gamma  p-critical 

5 vs. 4 1.12 0.037 1.36 0.046 

5 vs. 3 
1.01 0.031 

1.42 0.033 
1.06 0.118 

5 vs. 2 1.04 0.033 1.34 0.043 

5 vs. 1 1.06 0.039 1.14 0.036 

4 vs. 3 1.08 0.038 1.42 0.045 

4 vs. 2 
1.01 0.002 

1.28 0.042 
1.14 0.107 

4 vs. 1 
1.01 0.002 

1.12 0.043 

1.16 0.141 

3 vs. 2 1.06 0.031 
1.01 0.002 

1.14 0.123 

3 vs. 1 1.20 0.101 1.02 0.127 

2 vs. 1 1.38 0.050 
1.01 0.431 

1.18 0.048 
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V. DISCUSSION AND CONCLUSIONS 

So much attention has been given lately to the issue of nutritional labeling due to the 

obesity problem. The hypothesis is that nutritional label use can reduce obesity rates. 

Previous studies, as discussed earlier, have generally found that nutritional label use 

can improve dietary outcomes.  However, it is unknown and unclear if nutritional label 

use can indeed influence body weight outcomes.  This is the simple aim of our study.  

Using propensity matching technique, our results generally suggest that nutritional 

label use does not have an effect on BMI. 

The FAFH sector is under increasing pressure to provide nutritional information 

in restaurants and fast food places. Much of the arguments in favor of a mandatory 

nutritional labeling law in the FAFH sector has stemmed from the supposedly 

beneficiary impact of nutrition information in the Food-At-Home market. The New 

York City Board of Health has already taken one step forward by requiring the city's 

restaurant chains to show calorie information on their menus and menu board. The new 

regulation came into effect in April 2008 and applies to any chain restaurant in New 

York City that has 15 or more outlets in the US. One of the benefits of this law was 

estimated to be the reduction in the number of obese New Yorkers by 150,000 over the 

next five years.  Given our finding, this projection might be overstated.   

Since the NLEA is only for the food at home market, it is not clear either if 

mandatory nutritional labelling in the FAFH market is warranted given our findings. 

More research is needed to specifically analyze the effects of nutritional label use in the 

FAFH market on body weight and other health outcomes. Unfortunately, we do not 

currently know of any existing comprehensive datasets that would enable researchers to 

conduct such analysis at the moment. Future studies should also attempt to definitively 

assess the possible reasons on why reading nutritional labels would not reduce BMI. 

One possible explanation that could be evaluated is the remedy message explanation, a 

phenomenon well founded in the marketing literature. Nutritional labeling can be seen 

as a disclosure remedy, that has the aim to correct market failure related to the 

inadequate provision of information (Seiders and Petty, 2004). Ironically, remedy 

messages boomerang on the people who are intended to be helped the most (Bolton et 

al., 2006) because some consumers appear less risk averse when remedies are available. 

For example, in an experiment, Bolton et al. (2006) found that a remedy message for a 
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fat-fighting pill undermined food fat content perceptions and increased high-fat eating 

intentions as problem status (concerns about body image) increased. Another possible 

reason is moral hazard since it is possible that individuals who read nutritional labels 

take less precaution in other areas of weight control.  
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