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ABSTRACT 

 

A sector model presented in this article, uses about 200 representative French cereal-oriented 

farms to estimate policy impacts by means of mathematical modeling. Usually, such models 

suppose that farmers intend to maximize expected gross margin. This rationality hypothesis 

however seems hardly justifiable, especially these days, when gross margin variability due to 

European Common Agricultural Policy changes may become significant. Increasing 

uncertainty introduces bounded rationality to the decision problem so that crop gross 

margins may be better approximated by interval rather than by expected (precise) values. 

The initial LP problem is specified as an “Interval Linear Programming (ILP)”. We assume 

that farmers tend to decide upon their surface allocation prudently in order to get through 

with minimum loss, which is precisely the rationale underlying the minimization of 

maximum regret decision criterion. Recent advances in operations research, namely Mausser 

and Laguna algorithms, are exploited to implement the min-max regret criterion to arable 

agriculture ILP. The validation against observed crop mix proved that as uncertainty 

increases about 40% of the farmers adopt the min-max regret decision rule instead of the 

gross margin maximization.  

 

Key words: Interval Linear Programming, Min-Max Regret, Common Agricultural Policy, 

Arable cropping, France 

 

JEL classification : C61, D81, Q18 
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Introduction 

Since the revision of European Common Agricultural Policy (CAP) in 1992, cereal support prices have 

gradually decreased, compensated by arable area payments. A proportion of arable land set aside 

conditions the eligibility for area-aid. The Agenda 2000 reforms to the cereal sector, implemented in 

year 2002, reinforces area-aid that becomes equal on cereals or oilseeds or land set aside, further 

reducing the intervention price. Set aside obligation still holds fixed at a minimum 10% of the eligible 

area. World Trade Organization (WTO) negotiations have triggered the pursuit of the reform to the CAP 

introducing the idea of production-independent support to cereal farms. The decoupling of subsidies and 

production along with cereal intervention price of 101.3 €/t has been adopted, ratified by the European 

Council in June 2003, and is known as the Luxembourg compromise. For cereal-oriented farms, these 

changes imply an important reduction in prices and in the amount of subsidies allocated for oilseeds, 

cereals and protein seeds. A prime concern of national governments is, therefore, the evolution of the 

surfaces allocated to these crops and their welfare implications as well as their impacts to farm income.  

 

Several analyses have considered the welfare implications of CAP, estimating industry supply with short 

and long-run elasticity and when farmers join the set-aside scheme, as well as impacts of risk-aversion 

to the farmers’ behavior (Froud and Roberts, Roberts, Froud and Fraser). The main disadvantages of the 

above studies are the single output  assumption and the level of aggregation. Wilson, Gibbons and 

Ramsden point out that at the aggregate level analyses fail to capture how farm-level rotational / 

cropping mix responses to price and policy signals impact upon supply. This analysis at the farm-level is 

used to consider the implications at industry level. Even if they empirically predict farm level response 

to policy and its financial and resource implications using detailed mixed-integer modeling, they only 

descriptively project farm-level results at the industry level.  

 

The present article illustrates how one can use mathematical  programming to adequately represent 

farmers’ response at the industry level by aggregating individual responses and also attempts to improve 
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standard methods in order to take into account of uncertainty. A Linear Programming (LP) model of 

arable agriculture supply featuring the integration of farm-level decisions with regional aggregates based 

on a methodology proposed by Sourie et al. is used for this purpose. Mathematical modelling provides a 

tool to evaluate simultaneous policy interventions in a system, such as arable agriculture, taking into 

account interrelationships like resource and agronomic constraints as well as synergies and competition 

among activities. Optimisation models maximising consumer and producer surplus selecting among 

feasible activity plans have been extensively used in agricultural sector modelling. They allow for a 

technicoeconomic representation of the sector containing a priori information on technology, fixed 

production factors, resource and agronomic constraints, production quotas and set aside regulations, 

along with explicit expression of physical linkages between activities. Assuming rational economic 

behaviour optimisation results in efficient allocation of production. When the base year optimal crop 

mix approaches the actual one, then the model can be expected to forecast future changes given specific 

policy parameters and to reveal impacts of different agricultural policy scenarios on production volume, 

resource allocation and farm income, eventually evaluating policy efficiency. Moreover, optimisation 

analysis is theoretically appealing as it generates shadow prices for explicit capacity as well as policy 

constraints providing valuable information to policy makers. However in most cases it is difficult to 

replicate actual base year data using the model due to disadvantages inherent to the LP. Those usually 

mentioned in the literature as cited by Lehtonen are : a) normative optimisation behaviour due to strict 

neoclassical assumptions, b) aggregation problems, c) ad hoc calibration and validation procedure, d) 

discontinuous response to changing endogenous conditions, and e) tendency to strong specialisation.  

 

In order to paliate the above deficiencies the arable supply model used is sufficiently detailed to reflect 

the diversity of arable agriculture, articulating hundreds of farm submodels in a block angular form, that 

have neither the same productivity nor the same economic efficiency so that the production costs are 

variable in space. For this reason, ex-post aggregation helps to avoid problems (discontinuous response, 

overspecialization) arising from the sector representation  from a single representative farm, which does 
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not consider heterogeneity phenomena. Consequently, the average cost is not considered equal to the 

marginal one, as marginal behaviour can be inferred for the sector.  

 

Moreover, the model is calibrated via crop rotation constraints as well as flexibility constraints used to 

avoid arbitrary and non-explicit adjustments or ad hoc parameter and data manipulations. As Lethonen 

rightly observes, these manipulations hide the structural deficiencies of the models making them 

difficult to update, deteriorating the trust of policy makers to model-based economic and policy analysis. 

Crop rotation constraints applied are specified by agronomic practices proper to the examined cropping 

system in French conditions. Statistical information on maximum coverage by crop is used to specify the 

so-called flexibility constraints.  

 

The model contains 216 farms of French representative arable regions (cereal specialized, OTEX 

13). The model validation process revealed that in most cases the model could not satisfactorily 

reproduce the observed behavior. However, even if the fit at the farm level is poor,  the aggregate 

activity levels approach to the actual ones, not reproducing though the observed crop mix. This is mainly 

due to the penny-switching nature of linear programming that, despite the battery of technical (crop 

rotation) and flexibility constraints, often results in overspecialization. This can be avoided when non-

linear terms are included in the objective function. These terms can express diminishing marginal utility 

or risk-averse behaviour as in the case of risk-adjusted optimisation models. Utility depends not only on 

expected gross margin values but on variances of crop prices and yields as well as on some risk aversion 

coefficients. A review of methods introducing risk in mathematical programming can be found in 

Hardaker, Huirne and Anderson as well as in Hazell and Norton. One could mention the E-V model as 

well as its linearised versions such as MOTAD and target-MOTAD and also models based on game 

theory reasoning such as maximin, minmax, safety-first and other models. For all these models, 

availability of covariance matrices – that require gross margins of individual crops related to different 

states of nature or years- is fundamental for efficient diversification among farm activities as a means of 
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hedging against risk. Consequently it is extremely difficult to apply these methods to regional models 

containing hundreds of farms.  

 

Non-interactive methodologies that attempted to elicit multi-criteria utility functions included at 

least one risk criterion thus also requiring detailed information at the farm level. As a matter of fact, a 

survey of these methods state (Gomez-Limon, Riesgo and Arriaza) that the risk criterion ranks second 

after the gross margin maximisation one in the multi-objective function weighted at around 30%. This is 

probably the reason that modelling implementations based on the aforementioned methodology are 

tested at best on a few farms. As our intention is to represent diversity using larger samples we opted for 

LP with interval objective function coefficients. In other words, the uncertainty element in the objective 

function (with regard to prices and yields) is taken into account through the introduction of intervals on 

gross margins per surface unit in the objective function. The normative behavior assumption thus 

incorporates the bounded rationality element. To specify intervals the sole requirement is a reliable idea 

of the range of variation of gross margins. These ranges may be assessed at the regional level by crop 

using FADN or Agricultural Chambers census.  

 

It is proved that interval linear programming (ILP) models are equivalent to a specific class of multi-

objective (MO) models with objectives generated by the extreme interval values. By means of 

experiments, an attempt was successively made to all elementary farm models to check if it is 

reasonable to represent farmers' behavior using the min-max regret criterion. This decision criterion has 

been proposed by Savage suggesting that the decision-maker regrets after all about the costs of missing 

opportunities resulted by their final decision versus other decision actions that could be chosen. It is a 

regret-averse attitude that could apply to farmers at the moment of deciding on the land allocation to 

crops for the coming cultivation period. Farm sub-models whose observed behavior is explained better 

when uncertainty is taken into account in the form of ILP, in other words, for those farmers that minmax 

regret objective function optimal solution approaches closer to the base year crop mix, we adopt 

hereafter the ILP specification. When the gross margin maximization rule reproduces satisfactorily 
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reality it is retained as a decision rule and the corresponding farm models remain LP specified. Thus, a 

hybrid block angular arable sector model is formed with an improved predictive ability that the initial 

LP. The main drawback is the exponential increase of computing time lapse to solve the ILP as for n 

interval coefficients the min-max optimization of the ILP requires the solution of 2(n-1) LP and 0-1 

models. In this study, farm models contain one-digit objective function terms keeping the model size 

manageable. This issue is discussed in section 4 where relevant technical information is given.   

 

The paper is organized as follows: A concise presentation of the mathematical structure of the LP model 

is given in the next section. Formal aspects of the "Interval Linear Programming (ILP)" approach are 

presented in section 3. The use of the minmax regret criterion within the ILP framework is explained in 

section 4. The case study and the results thereof are the focus points of section 5. Finally, conclusions 

and remarks for further research complete the article.  

Modeling the Farmers' Behavior: The mathematical formulation 

A multi-agent model has been developed to represent the French arable agriculture using linear 

programming to cope with decision making within different productive units. These units are 

independent farms in a context of perfect competition. This sector model is built upon a common sort of 

structure which arises in multi-plant models, known as a block angular structure. One common row is 

always the objective row whereas diagonally placed blocks of coefficients denote sub-models, each one 

corresponding to a representative farm. It is supposed that there are no other common rows (or common 

constraints), that is there is no question of allocation of scarce resources across farms. Therefore 

optimizing this model it simply amounts to optimizing each sub-problem with its appropriate portion of 

the objective that is equivalent to treating each farm as autonomous.   

 

The variables of each elementary model represent surfaces to be allocated to the production of various 

crops by the corresponding farm. For each farm, the number of variables is variable with the total 

number of crops. The model determines the surface allocation for each elementary model by 
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maximizing the total gross margin of that farm. Hence, the objective function for the fth elementary 

model is: 

  ( )∑∈
⋅−+⋅=

Ii fifiifii
f xchsypz ,,,  

where i ∈ I is the index for crops, pi is the price for the ith crop, yi,f is the yield for the ith crop on the fth 

farm, si is the subsidy for the ith crop, chi,f is the production cost for the ith crop on the fth farm, and 

finally, xi,f is the surface allocated for the ith crop by the fth farm. The sector optimal solution is simply 

the aggregate of the optimal solutions of all elementary models: total surface allocated to a crop at the 

regional level is equal to the sum of the surfaces allocated to this same crop in the optimal solutions of 

each elementary model. 

There exist several types of constraints in this model: Land resource constraints, set aside constraints, 

quotas on demand, rotation constraints, etc. They can be categorized into the following groups defined 

in detailed mathematical form in the appendix :  

 Explicit resource constraints (relationship 2, see appendix). Land resource constraints for each 

farm limit the total arable land to its observed value, irrigation constraints give the observed upper 

bounds for the irrigable surface. Their parameters are easily determined by historical data and 

observation.   

 Set aside constraints (relationships 3, 4). Obligatory set-aside reaches 10% of arable land 

according to the Berlin agreement. This fraction of land can be either set aside or cultivated by industrial 

crops.   

 Demand or market quota constraints (relationship 5). Peas, potatoes and green beans surfaces 

are constrained by the demand, whereas sugar-beet is restricted by EU common market organization 

quotas. 

 Rotation constraints (relationships 6-8). The typical rotation constraint determines crop 

succession through time. In the agricultural sector modeling practice through mathematical 
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programming these succession restrictions are transformed to spatial restrictions that make the model to 

respect the farm rotation as it appears in the space at a particular moment (year).    

 Flexibility constraints (relationship 9, 10). These constraints give upper bounds on surfaces for 

crops or groups of crops. They reflect implicit constraints (such as availability of labor, technical and 

technological means, financial resources, etc.) that are not directly represented in the model due to 

modeling difficulties. For each farm, these upper bounds are a fraction of the total available land for that 

farm. These fractions are determined for crops and groups of crops over the whole sample. Hence, the 

same limit applies to all farms. The initial values for these fractions are determined by observing the 

historical data (see section 5 case-study). Flexibility constraints substitute for some sort of calibration 

procedure.  

Uncertainty and  Interval Programming 

 

In mathematical programming models, the coefficient values are often considered known and fixed in a 

deterministic way. However, in practical situations, these values are frequently unknown or difficult to 

establish precisely. Interval Programming (IP) has been proposed as a means of avoiding the resulting 

modelling difficulties, by proceeding only with simple information on the variation range of the 

coefficients. Since decisions based on models that ignore variability in objective function coefficients 

can have devastating consequences, models that can deliver plans that will perform well regardless of 

future outcomes are appealing. More precisely, an ILP model consists of using parameters whose values 

can vary within some interval, instead of parameters with fixed values, as is the case in conventional 

mathematical programming.  

Many techniques have been proposed to solve the resulting problem. Shaocheng studied the case where 

all the model parameters are represented by intervals and the decision variables are non negative. 

Recently, Chinneck and Ramadan generalized their approach to the case where variables are without 

sign restriction. The case which is of greater interest for our purpose is the one where only the objective 
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function coefficients are represented by intervals. This particular problem is the most frequently 

considered in ILP literature (Bitran, Inuiguchi and Sakawa, Ishibuchi and Tanaka, Mausser and Laguna 

(1998, 1999a, 1999b),  Rommelfanger , Steuer). We now introduce some definitions and notations and 

briefly present the formal problem.  

Interval Linear Programming Problem 

Let us consider a Linear Programming (LP) model with n (real and positive) variables and m constraints. 

The objective function is to be maximized. Formally: 

 max {cx : c ∈ Γ, x ∈ S}  (ILP) 

where 

 [ ]{ }niulcc iii
n ..1,,: =∀∈ℜ∈=Γ  

{ }mnmn bAxbAxxS ℜ∈ℜ∈≥≤ℜ∈= × ,,0,:  

Let { }{ }Γ∈∈=∈=Π cSycyxSx ,:maxarg:  be the set of potentially optimal solutions. Let Υ be the 

set of all the extreme objective functions: { }{ }niulcc iii ..1,,:Y =∀∈Γ∈= .To give insight into what the 

problem becomes when intervals are introduced, we recall the following theorem (Inuiguishi and 

Sakawa, Steuer): 

Theorem 

Let us consider the following multiobjective linear programming problem: 

 υ−max{cx : x ∈ S; c ∈ Υ}  (MOLP) 

 where the υ-max notation stands for the vector maximization. Then, a solution is a potentially 

optimal solution to (ILP) problem if, and only if, it is weakly efficient to the (MOLP) problem. 

Theoretically, this result enables us to mobilize all the tools and concepts of multi-objective linear 

programming literature, especially to choose/propose suitable solution concepts for (ILP) problem. In 

the literature, two distinct attitudes can be observed. The first attitude consists of finding all potentially 
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optimal solutions that the model can return in order to examine the possible evolutions of the system that 

the model is representing. The methods proposed by Steuer as well as Bitran follow this kind of logic. 

The second attitude consists of adopting a specific criterion (such as the Hurwicz's criterion, the maxmin 

gain of Falk, the minmax regret of Savage, etc.) to select a solution among the potentially optimal 

solutions. Rommelfanger, Ishibuchi and Tanaka, Inuiguchi and Sakawa and also Mausser and Laguna 

proposed different methods with this second perspective. Following this perspective, the next section 

introduces the approach that we have selected, namely the minimization of the maximum regret 

approach, and the procedure we adopted for its implementation. 

Minimizing the Maximum Regret 

Minimizing the maximum regret consists of finding a solution which will give the decision maker a 

satisfaction level as close as possible to the optimal situation (which can only be known as a posteriori), 

whatever situation occurs in the future. The farmers are faced with a highly unstable economic situation 

and know that their decisions will result in uncertain gains. It seems reasonable to suppose that they will 

decide on their surface allocations prudently in order to go through this time of economic instability with 

minimum loss, while trying to obtain a satisfying profit level. This is precisely the logic underlying the 

minmax regret criterion; i.e. selection of a robust solution that will give a high satisfaction level 

whatever happens in the future and that will not cause regret (Loomes and Sugden, 1982). Therefore, we 

make the hypothesis that the farmers of the considered region adopt the min-max regret criterion to 

make their surface allocation decisions. The mathematical translation of this hypothesis for the arable 

sector supply model was to implement the minmax regret solution procedure proposed in the literature 

(Inuiguchi and Sakawa, Mausser and Laguna, 1998, 1999a, 1999b). The presentation of the formal 

problem and the algorithm of minmax regret are presented in the following paragraphs. 

The MinMax Regret (MMR) Problem 

Suppose that a solution x∈S is selected for a given c∈Γ. The regret is then: 
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( ) { } cxcyxcR Sy −= ∈max,  

The maximum regret is: 

( ){ }xcRc ,max Γ∈  

The minmax regret solution x̂  is then such that ( ) ( )xRxR maxmax ˆ ≤ for all x∈S. The corresponding 

problem to be solved is: 

{ }{ }{ }cxcySycSx −∈Γ∈∈ maxmaxmin    (MMR) 

 

The main difficulty in solving MMR lies into the infinity of objective functions to be considered. 

Shimizu and Aiyoshi16 proposed a relaxation procedure to handle this problem. Instead of considering 

all possible objective functions, they consider only a limited number among them and solve a relaxed 

problem (hereafter called MMR’) to obtain a candidate regret solution. A second problem (called 

hereafter CMR) is then solved to test the global optimality of the generated solution. If the solution is 

globally optimal, the algorithm terminates. Otherwise, CMR generates a constraint which is then 

integrated into the constraint system of MMR’ to solve it again for a new candidate solution. This 

process continues in this manner until a globally optimal solution is obtained. The relaxed MMR’ 

problem is: 

{ }{ }{ }cxcySyCcSx −∈∈∈ maxmaxmin     (MMR’) 

where { } Γ⊂= pcccC ,...,, 21 . This problem is equivalent to: 

min r         (MMR’) 

s.t. kc
kk xcxcr ≥+ ,   k = 1,… , p 

r≥0,  x∈S,  ck∈C 
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where kc
x  is the optimal solution of ( )yck

Sy∈max . A constraint of type kc
kk xcxcr ≥+ is called a regret 

cut. Let us denote x  the optimal solution of MMR’ and r  the corresponding regret. Since all possible 

objective functions are not considered in MMR’ we cannot be sure that there is no c belonging to Γ \ C 

which can cause a greater regret by its realization in the future. Hence, we use the following CMR 

problem to test the global optimality of x : 

{ }{ }xccySyc −∈Γ∈ maxmax       (CMR) 

Observe that the objective function value of CMR represents the maximum regret for x  over Γ, denoted 

by ( )xRmax . If the optimal solution Γ∈∈ +
+

1,1
p

c cSx p  of CMR gives ( ) rxR >max , it means that 1+pc  can 

cause a greater regret than r  by its realization in the future and that it has to be considered also in C 

while solving MMR’. So, the regret cut 1
11

+
++ ≥+ pc

pp xcxcr  is added to the previous constraint set of the 

MMR’ to solve it again and obtain a new candidate. The process is iterated until the generated candidate 

regret solution is found to be optimal by CMR. This solution procedure idea is summarized by the 

following algorithm: 

The MinMax Regret Algorithm 

Step 0: ,0,0 ←←° kr  choose an initial candidate  x  

Step 1:  ,1+← kk Solve CMR to find kc  and ( )xRmax  : 

 If ( ) °= rxRmax then END.  x  minimizes the maximum regret. 

Step 2:  Add the regret cut kc
kk xcxcr ≥+  to the constraint set of MMR' 

Step 3:  Solve (MMR') to obtain a new candidate x  and r .  rr ←° . Go to Step 1. 

The difficulty in this resolution process lies in the quadratic nature of the CMR problem. Inuiguchi and 

Sakawa investigated the properties of the minmax regret solution to find a more suitable way to solve 

CRM. Mausser and Laguna (1998) used their results to formulate a mixed integer linear program 

equivalent to CMR which is less costly to solve. As Mausser and Laguna (1999a) noticed that the 
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complexity of that mixed integer program severely limits the size of problems to be addressed, therefore 

they suggested to use heuristics. In the problem studied here, uncertain objective function coefficients 

are in no farm decision making unit more than 10. Thus, in our experiments we used this equivalent 

problem mixed-integer formulation. 

Let us consider the following ILP model to illustrate how the algorithm works and its underlying logic.  

 

max c1x1+c2x2 

subject to 

2.49x1+2.5x2≤ 67.43  

3x1+2x2≤ 61 

5.5x1+3x2≤ 101.5 

1.51x1+4.5x2≤ 108 

2.5x1+0.75x2≤ 40 

6x1+x2≤ 90 

and  x1,x2≥ 0  

 where  c1∈[1,7] et c1∈[1,3].  

         

This problem has a feasible region delimited by the eight vertices (Fig. 1). The set of all the extreme 

objective functions is Y={(1,1) ;(1,3) ;(7,1) ;(7,3)}. The corresponding MOLP problem, by denoting S 

the feasible region defined by the constraints, is  

υ−max{ x1+x2, x1+3x2, 7x1+x2, 7x1+3x2 : (x1,x2) ∈ S }  
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When considered, separately, to each of these objective functions corresponds a different optimal 

solution (respectively to Y, (7, 20) ; (0, 24) ; (15, 0) ; (13, 10)).  Along with the vertices (4.5 , 

22.49) ;(10, 15.5) ;(13.75, 7.5), those solutions constitute basic efficient solutions for the MOLP. The set 

Π of potentially optimal solutions for the ILP (the efficient solutions for the MOLP) is given by convex 

linear combinations of every adjacent couple of these seven solutions.  

Let us apply the algorithm to this problem and discuss the results.  

Initialisation   Step 0 : r° ←0, 0=k ,  Let us choose (0,24) as the initial candidate x . 

Iteration 1    Step 1 : 1←k , Solving CMR leads to ( )xRmax  = 81 and 1c  is (7,1) , ( ) °≥ rxRmax  . 

Step 2 : The regret cut 7x1+x2 + r ≥ (7*15+1*0) = 105 is then added to the constraint set of 

the MMR’. In this way, the program will return a new candidate which will try to 

minimize the potential regret (105 - 7x1 - x2) that might occur if (15, 10) is not selected as 

a solution. Notice that this is logical considering since we have selected (0, 24) as the 

initial candidate solution. The algorithm detects that the objective function for which the 

other end of the efficient frontier, the point (15, 0), is optimal, may cause an important 

regret if this turns out to be the real objective function in the future.  

Step 3 : (MMR’) returns another candidate x = (15,0) and r = 0. rr ←° . Obviously, this 

solution minimizes the potential regret (105 - 7x1 - x2)! It will be tested next. 

Iteration 2  Step 1 : 2←k , Solving CMR leads to ( )xRmax  = 57 and c2 is (1,3) , ( ) °≥ rxRmax . 

Step 2 :Following the results of step 1, x1+3x2 + r ≥ (1*0+3*24) =72 is added as the new 

regret cut to constraint system of the MMR’. As before, the aim is to take into 

consideration the last regret possibility that CMR has returned. Now, MMR’ will try to 

return a new candidate by considering both potential greatest regrets (105 - 7x1 - x2) and 

(72 - x1 - 3x2). 
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Step 3 : Under these constraints, MMR’ returns x =(10.42,14.74) and r =17.32. r°← r .  

This time the regret is positive and the corresponding solution is not a vertex (see in 

figure 1).   

Itération 3  Step 1 : 3←k , Testing the candidate by CMR leads to Rmax(x*) = 17.32 = r° . END. 

 

Thus, x *=(10.42,14.74) minimizes the maximum possible regret by r  = 17.32. It can be noted that the 

minmax regret solution is a well balanced solution, an efficient solution of the MOLP, which has been 

obtained by taking into account extreme cases that might prove “fatal” for a decision maker. 

Case study  

Arable farms have been selected out of a sample of 216 located in the cereal production oriented region 

of the North-East Ile-de-France. Farm Accounting Data Network (FADN) data (orientations OTEX 13) 

on number of farms, surfaces cultivated, and land set aside concerning the above farm types have been 

used in this exercise along with detailed data on inputs of arable crops used by each farm (Sourie et al., 

2000). The year 1999 has been chosen as the basis because the percentage of land set aside then fixed by 

the C.A.P. at 10% of the surface of cereals and oil and protein seeds, equals the one fixed by the Berlin 

agreement for the period 2000-2002. The horizon 2002 is taken as reference for the reason that CAP 

reform of 1999, is then totally applied, after two years of transition 2000-2001. Profiles of the group are 

shown in table 1 (first two columns). This sample adequately represents the diversity of arable cropping 

farms in the Central and Northern France and has been chosen because of its sensibility to policy 

changes by reason of:  

I. Moderate agricultural returns, (gross margin at 500 €/t in 2000) depending strongly on cereal 

prices and subsidies; subsidies vary around 360 €/ha, that is about double the per hectare 

returns 

II. Crop mix not diversified, with cereals dominating at 60% and oleaginous crops at 25%; yields 

are average with 7.3 t/ha for wheat and 3.3 t/ha for rapeseed 
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III. Obligatory land set aside at 10% of the total arable hectareage, as all crops belong to the SCOP 

group. The farm size is rather big averaging at 150 ha 

“Agenda 2000” implemented in 2002 penalized these farms because of the leveling of subsidies of 

oleaginous crops to those of cereals at about 120 €/ha of oleaginous crops.   

 

In total, 216 elementary models are articulated in a block angular sector model maximizing the total 

welfare. Each individual farm model had up to 9 variables. Cereals (wheat, winter and spring barley and 

maize), oleaginous crops (sunflower and rapeseed) and energy rapeseed allowed to grow in set aside 

land and fallow land. Second wheat production, an artificial variable difficult to observe actual 

cultivated surfaces, is also included. Constraints include rotation practices (first winter wheat after 

maize, rapeseed, sunflower or fallow land), set aside obligation. The so called flexibility constraints 

reflect statistics regarding the arable farm coverage by specific crops or groups of crops. Thus, cereals, 

oleaginous crops as a group as well as rapeseed and sunflower are limited to a proportion to total arable 

land (100%, 50%, 30% and 20% respectively), corn and barley are limited by their own historical 

records (110% of maximum surface observed the previous 3 years) whereas energy crops coverage in 

practice does not exceed half of the land set aside. Flexibility constraint right hand side limits can be 

reconsidered if necessary and after some iterations they can be adjusted respecting statistical trends so 

that the model results approach as closely as possible to the reality.  

 

The validity of the arable sector model has been checked by comparing optimal activity level outcomes 

of the model with the actual ones. To evaluate the proximity of the LP solution opt
kx  to the observed 

activity level obs
kx  for the crop k, we used the following distance measure: 

( ) ( )
∑

∑ −
==

i

obs
i

i

obs
i

opt
iobsopt

optopt

x

xx

TotalLand
xxLxM ,1

1
   (14) 

As shown in table 1 concerning the cereal oriented region, rape-seed for food and energy as well as 

sunflower cultivated surfaces are underestimated whereas cereals are overestimated. The difference in 
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absolute value between the observed production levels and the optimized allocations (in other words, the 

distance between the two solutions using a L1 metric) is approximately 1.8 million ha. The total arable 

land considered being 7.8 million ha, the relative distance (the difference between the two solutions in 

absolute value divided by the total arable land) is about 20%. The fit is usually better at the aggregate 

level than at the farm level, as compensatory effects across farms counteract, making the model results 

approach the observed crop mix. As a matter of fact at the elementary farm level, distances become 

more important: the relative average distance by farm is about 37% with standard deviation of 22% 

(illustrated by cumulative distribution of the “LP opt” line in figure 2).     

 

Hence, the need for further calibration of the model is clear. In all evidence, such variations can occur 

for two reasons: an inaccurate specification of the feasible region of the model or an inaccurate 

specification of the objective functions. In this exercise, we assume that the feasible region of each 

elementary model adequately represents the allocation possibilities of the farmers. Let us note that the 

observed solutions for each farm have been verified to be feasible in the corresponding model. 

Regarding the objective function specification, it is reasonable to suppose that, in a relatively stable 

environment, farmers will base their decisions on average prices. The LP model is originally designed 

under this very assumption: objective function coefficients (the gross margins per crop) are calculated 

based on the 1993-1997 price and yield averages. However, in the present context, with subsequent CAP 

reforms that downgrade subsidy stability factor in the formation of gross margin, the natural uncertainty 

about yields combined with an increasing uncertainty about prices enlarge the gross margin variation 

range. Table 2 illustrates variability of gross margins for crops observed in the sample due to yield and 

price variations in different policy contexts. Beside the initial situation in year 2000, gross margin 

variability is estimated for the revised C.A.P. implementing the flat rate subsidy (4-5 columns in table 

2), and the mid-term review decoupling measure (6-7 columns in table 2). Calculations are performed 

using data of the year 2002 in order to facilitate comparisons of impacts. Total uncertainty can be 

represented by the range determined by µ±2σ, where µ is the mean value and σ the standard deviation of 
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the gross margin distribution. Slightly decreased variability for cereals while increasing for oleaginous 

crops is observed after the implementation according to the Berlin agreement. As expected significant 

increases are noted throughout all crops when subsidies are decoupled from production. The subsidy 

bulk inflow does not stabilize any more gross margin at the crop level, nevertheless it is received as a 

lump sum contributing to the farm income. However, even if a significant part of the farm income is 

assured, at the moment of decision on which crop to cultivate the farmers cannot ignore such huge 

variability especially concerning corn, barley and oleaginous crops. Thus, we opted for investigating the 

problems that may arise because of a possibly inaccurate specification of the objective functions. In 

other words, an implicit assumption is that the objective function coefficients, which correspond to crop 

gross margins per hectare, are perceived by farmers as imprecise numbers rather than crisp values of 

expected gross margins. Therefore, they will be represented in the model by intervals transforming the 

original LP to an interval linear programming problem.  

 

The interval linear programming approach with the minmax regret criterion objective function has been 

implemented to investigate if the model’s validity can be improved. The GAMS software is used to 

implement the proposed minmax regret algorithm using the linear and integer programming modules of 

the CPLEX solver (Brooke et al., 1998). Gross margin intervals have been used in the model for crops 

that appear in table 2, so that the number s of interval-valued coefficients can be up to 9. For the initial 

regret candidates to start the algorithm, we used the LP optimal solutions.   

 

Results and discussion 

The principal effect of the ILP approach with the minmax regret is:  when the difference between the 

gross margins is relatively small, the minmax regret approach gives more "balanced" solutions, more so 

when the interval coefficients get larger. In fact, as the intervals get larger, the gross margins for 

different crops start to overlap or, if they already have an intersection, this increases. It then becomes 

more difficult for the farmer to anticipate which crop will be more profitable. Hence, the min-max regret 
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approach tends to return more and more balanced solutions as the size of the intervals increase. Figure 3 

illustrates that point, in a cereal farm (with %341 =optM ) where, at the LP optimal solution, wheat is 

selected at the expense of spring barley and energy rapeseed. In the minmax regret crop mix, wheat 

surface is decreased whereas spring barley and rapeseed on set aside appear again approaching 

drastically to the reality ( %14maxmin
1 =M ). A detailed discussion on this point is presented by Kazakci 

and Vanderpooten (2002).  Across the sample, the effects of the min-max regret approach on the 

proximities to the observed crop mix obtained at the microscopic level are considerable: for about 38% 

of the farms,  the relative distance ( ( )maxmin
1 xM ) of the minmax regret solution to the corresponding 

observed solution is smaller than the relative distance of the LP's optimum solution to the observed one. 

The opposite is true for the 18% while both objective function specifications give identical solutions for 

the rest of the farms.  Concerning the improvement in the proximities to the observed solutions, the 

worst proximities ( ( )jM1max ) obtained for these 38% of the farms provide an average improvement of 

10% with respect to the LP's proximities (see cumulative distribution illustrated by bars in figure 2).  

Thus some farmers maximize gross margin while others demonstrate regret-averse attitude. Revealed 

preferences by the farm by farm scrutiny lead us to attempt to model risk behavior at the aggregate level 

assuming different preferences among producers. For each individual farm elementary model a simple 

rule replaces the objective function with that, between gross margin maximization and min-max regret, 

performing better in terms of proximity of the resulted crop mix to the observed one. When both criteria 

performance is equivalent, maximization of profit is selected by default. This way we end up with a 

hybrid model with two possible objective function specifications for each farm. This model has by 

definition a higher predictive capacity than the initial LP. As a matter of fact the relative distance at the 

aggregate level decreases from 20% to 16% for the hybrid model, the aggregate crop mix appearing in 

figure 4.  

The hybrid model will be used to evaluate different policy scenarios, more specifically the recent 

midterm revised CAP against the CAP implemented in 2002 according to the Berlin agreement. The 
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mid-term review of the CAP features the decoupling of subsidies from production aiming at the same 

time at the redistribution of the expenditure to the benefit of the rural development budget at the expense 

of the CAP pillar one. In practical terms concerning the arable sector new measures can be summarized 

in the following propositions:  

 

• No subsidies per crop  

• Environmental set aside  

• Energy crops in direct competition with food crops 

• Subsidy for the greenhouse effect mitigation of 45€/ha exclusively to energy crops     

 

We checked this policy scenario against the base case (Berlin agreement in the year 2002) using the 

hybrid model in order to assess the impacts to the French arable sector and provide to policy makers 

with useful intuitions. The results confirm actual trends, with increased acreage of wheat at the expense 

of oleaginous crops, namely rapeseed and sunflower. Rapeseed surface is increased though in land set 

aside, with fallow land practically disappearing (CAP 2002 vs. conditions 2000). The simulation of the 

midterm revision of CAP applying decoupling does not alter drastically the crop mix, except that it 

reinforces the above trends (mid-term review 2002). Environmental set-aside is restored to 50000 ha 

whereas rapeseed for energy purposes decreases to half the surfaces cultivated in the period 1999-2000 

(figure 5). This is expected as energy crops are now exposed in direct competition with food crops and 

the carbon subsidy does not compensate for losses due to cultivation on higher opportunity cost land 

than that set aside under the previous CAP regimes. 

Conclusions 

The aim of this study was to improve the representative capacity of sector supply model, a linear 

programming model intended to reproduce the behavior of the farmers with respect to their surface 

allocations to various cultures and to study the impacts of the policy changes on cultivated surfaces. The 
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uncertainty has been modeled by the introduction of interval valued parameters at the objective function 

level. The resulting model from this approach is an "Interval Linear Programming Model".  

Within this framework, we considered 216 elementary linear programming models corresponding to the 

farms specializing in cereal production. It was assumed that farmers' behavior could be represented 

using the min-max regret criterion. To test this hypothesis, the min-max Regret (MMR) algorithm was 

implemented for each of the elementary models. The aim of the algorithm is to find the solution 

minimizing the maximum regret for a linear programming model with objective function coefficients in 

the form of intervals. Experiments with various sets of intervals were performed. 

Analysis of the results and the comparison with the optimal solutions of the LP for the elementary 

models showed that the MMR approach had a character which softened the often abrupt nature of the 

linear programming, for which the least difference between the unitary margins implies the exclusion of 

the least profitable crop. In many cases, the MMR approach gave better balanced and distributed 

solutions, and this more so when the overlapping of the interval profits for various crops increased. We 

also observed that our hypothesis was only partially true. Although some improvements were achieved, 

the proximities obtained by the MMR approach were not always satisfactory enough to support that the 

farmers decide on their surface allocations according to the logic of min-max regret. Thus the profit 

maximizing attitude is retained in 62% of the farms so we ended up with a hybrid block angular model 

with two possible objective function specifications for each farm (block). This model has by definition a 

higher predictive capacity than the initial LP. As a matter of fact the relative distance at the aggregate 

level decreases from 20% to 16%. 

 

The hybrid model has been used to evaluate different policy scenarios, more specifically the recent 

midterm revised CAP against the CAP implemented in 2002 according to the Berlin agreement. Results 

confirm actual trends due to the application of the Berlin agreement CAP and demonstrate cereals 

increase versus oleaginous crops as well as rapeseed for biodiesel decrease versus fallow set aside.    
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APPENDIX. Agricultural sector model specification 
Indices 
u∈ U crop index,  (c=1 for wheat, 2: wheat monoculture, 3: wheat after peas, 4: wheat in set aside, 5: barley, 6: 

winter barley, 7: corn, 8: fresh peas, 9: rape-seed, 10: sunflower, 11: peas, 12: potatoes, 13: sugar beets, 14: 
green beans, 15: sugar beet-ethanol, 16: wheat-ethanol, 17: rapeseed-ester, 18: land set aside) 

c∈ C⊂ U  index for the subset of food crops, C={1, …, 14} 
d∈ D⊂ U index for the subset of energy crops, D={15, 16, 17} (   D  = m ) 

i∈ I ⊂ U  index for the subset of food crops based upon which land set aside is calculated, I={1, …, 11} 
h∈ H ⊂ U index for crops demand quota, H= {8, 12, 13, 14} 
t∈ T ⊂ U index for crops preceding wheat, T ={7, 8, 9, 10, 12, 13, 14, 15, 17, 18}  
g1∈ G1   index for crops that belong to group 1, G1= ({1-6}, {9, 10}, {13, 15}, {9}, {10} ) 
g2∈ G2⊂ U index for crops that belong to group 2, G2= ({8}, {11}, {5}) 
f∈ F  index for farms  
k∈ K  index for agronomic constraints 

Parameters 
gc,f gross margin for food crop c grown on farm f (€/ha) 
pd price at the farm gate for energy crop d (€/t) 
yd,f yield of energy crop d grown on farm f (t/ha)  
sd subsidy paid to farmers for energy crop d (€/ha) 
cd,f production cost for energy crop d on farm f (€/ha) 
γ subsidy to land set aside (€/ha) 
wf multiplier used to scale up arable land of farm f  to the national level 
σf total arable land available on farm f (ha) 
σ1,f land available on farm f for sugar-beet for sugar production (ha) 
θ fraction of arable land that must be set aside (for 1998: 10 % of total land with cereal, oil and protein seeds) 
πk maximum fraction of land permitted for crops included in agronomic constraint k 

Decision Variables 
xc,f   area allocated to food crop c on farm f (ha)  
xd,f   area allocated to energy crop d on farm f (ha) 
 
 
     ( ) f

Ff Dd
fdfddfdd
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Figure 1. Decision Space in the Example and Regret Cuts.  
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Figure 2. Cumulative Distribution of  Relative Distances 
 

relative distance cum distributions

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Classes

Fr
eq

ue
nc

y

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

hybrid
LPopt

 
 
 



29 

Figure 3. Comparison of the Minmax Regret with the Observed and the LP Solutions for a Typical Farm (surfaces in ha). 
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Figure 4. Aggregate Crop Mix (in ha)  under Different Model Specifications 
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Figure 5. Policy Impacts on the Crop Mix in Cereal Farms  
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Table 1. Aggregate Results of the LP Model vs. Observed Values  

 

Observed 

surfaces in ha 

Observed crop 

mix LP optimal crop mix 

Relative  percentage to 

total surface 

Wheat 2 813 264 36.1% 40.5% 4.54% 

Barley 661 293 8.5% 7.1% 1.31% 

Spring barley 1 052 023 13.5% 19.4% 5.96% 

Maize 436 967 5.6% 2.7% 2.91% 

Rape seed 1 875 315 24.0% 22.5% 1.50% 

Sunflower 117 546 1.5% 0.9% 0.65% 

Rapseed ME 310 229 4.0% 1.2% 2.75% 

Set aside 536 704 6.9% 5.7% 1.21% 

 7 803 341 100.0% 100.0% 20.84% 
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Table 2. Variability of Arable Crop Gross Margin (€/ha) for Different Policy Regimes  

 data 2000 2002 (flat rate subsidy=358 €) 2002 : decoupling 
 mean gm stdev %gm subs %gm mean gm stdev gm mean gm stdev gm 

wheat 558 14% 56% 617 13% 

        

259    30% 

cont. Wheat 486 16% 64% 546 14% 

        

189    41% 

spring barley 572 16% 54% 615 15% 

        

257    35% 

winter barley 469 23% 66% 538 20% 

        

182    57% 

maize 477 32% 65% 532 28% 

        

174    100% 

rapeseed 564 18% 85% 516 21% 

        

158    68% 

sunflower 420 19% 114% 386 23% 28       311% 

Wheat-to-ethanol 525 14% 73% 543 14% 

        

230    33% 

Rapeseed-to-ester 419 22% 91% 426 22% 

        

114    83% 

set aside 310 9% 123% 287 10% -  71    39% 

 
 


